
Nexus Personal

Technical Description

Nexus Personal: Technical Description

Publication date 2013-10-31
Copyright © 2013 Technology Nexus AB

Nexus endeavors to ensure that the information in this document is correct and fairly stated, but does not accept liability for any error or
omission. The development of Nexus products and services is continuous and published information may not be up to date. It is important to
check the current position with Nexus. This document is not part of a contract or license save insofar as may be expressly agreed. Nexus has
been applied as a trademark of Nexus. All other trademarks are the property of their respective owners.

iii

Table of Contents
Introduction .. ix

About this Document .. ix
Screendumps ... ix

Product Overview .. ix
Web Browser Plug-Ins .. ix
Cryptographic APIs ... x
Administration .. x
NetDetacher ... x

Product Structure ... xi
Personal Process .. xi
Browser Process .. xi
Third-Party Applications .. xii

GUI Branding ... xii
Environment ... xii
What is New in this Version ... xii
Where to Find the Information .. xii

Release.txt .. xiii
Help ... xiii

How to Contact Us ... xiii
1. Functional Description Overview ... 1

Architecture ... 1
WebSigner ... 2
Signer2 ... 3
Authentication .. 3
Registration Utility .. 3
Administration Plug-in ... 4
Version Plug-in .. 4
LogoutTokens Plug-in .. 4

Cryptographic APIs ... 4
Microsoft CSP .. 5
PKCS#11 .. 5

Installation and Updating ... 5
Soft Token Migration .. 6
Integration with Standard Products ... 7

Integration with Internet Explorer .. 7
Integration with Mozilla-Based Browsers .. 7

Branding ... 7
Branding on Windows platforms .. 7
Branding on Mac OS X ... 7
Branding on Linux .. 7

Card Reader Support ... 7
2. WebSigner Plug-in .. 8

Introduction ... 8
Plug-in Activation ... 8

Internet Explorer ... 8
Mozilla-Based Browsers ... 9

Parameters ... 9
Scripting .. 12
Usage and GUI ... 13
Sample Web Pages .. 13
Digital Signature Format .. 15

3. Signer2 Plug-in ... 17
Introduction .. 17
Plug-in Activation ... 17

Internet Explorer ... 17

Nexus Personal

iv

Mozilla-Based Browsers ... 17
Parameters ... 18
Scripting .. 20
Sample Web Pages .. 21

Internet Explorer ... 21
Mozilla-based browsers .. 21
Signer2 Signature Sample ... 22

Error Codes .. 23
4. Authentication Plug-in .. 25

Introduction .. 25
Plug-in Activation ... 25

Internet Explorer ... 25
Mozilla-Based Browsers ... 26

Parameters ... 26
Scripting .. 28
Sample Web Pages .. 29

Internet Explorer ... 29
Mozilla-based browsers .. 29
Authentication Signature Sample .. 30

Error codes .. 31
5. Registration Utility Plug-in .. 33

Introduction .. 33
Plug-in Activation ... 33

Internet Explorer ... 33
Mozilla-Based Browsers ... 34

Parameters ... 34
Scripting .. 35
Usage and GUI ... 38

Creating a Token .. 38
Sample Web Pages .. 39

Internet Explorer ... 39
Mozilla-based browsers .. 40

Error Codes .. 41
Format of a CMC Request and Response ... 42

Request ... 42
One Time Password ... 42
Response ... 42

6. Administration Plug-in .. 43
Introduction .. 43
Plug-in Activation ... 43

Internet Explorer ... 43
Mozilla-Based Browsers ... 44

Parameters ... 44
Scripting .. 45
Sample Web Pages .. 47

Internet Explorer ... 47
Mozilla-based browsers .. 47

Error codes .. 48
Configuration .. 49

7. LogoutTokens Plug-in .. 50
Introduction .. 50
Plug-in Activation ... 50

Internet Explorer ... 50
Mozilla-Based Browsers ... 51

Parameters ... 51
Scripting .. 51
Usage .. 51
Sample Web Pages .. 52

Nexus Personal

v

Security Issues .. 53
8. Version Plug-in ... 54

Introduction .. 54
Plug-in Activation ... 54

Internet Explorer ... 54
Mozilla-Based Browsers ... 55

Parameters ... 55
Scripting .. 55
Sample Web Pages .. 56
Output format ... 57

9. Personal PKCS#11 ... 59
Introduction .. 59
Mozilla Browsers .. 59
PKCS #11 API ... 59

General Purpose .. 59
Slot and Token Management ... 59
Session Management .. 60
Object Management ... 60
Encryption and Decryption .. 60
Message Digesting .. 60
Signing and Verifying .. 61
Key Management .. 61
Random Number Generation ... 61
Interoperability ... 61

PKCS#11 Configuration ... 62
10. Personal CSP .. 63

Introduction .. 63
CSP Information ... 63
CSP Functions .. 63

CSP Connection .. 63
Key Management .. 63
Hashing and Digital Signatures .. 64
Encryption ... 64

Interoperability ... 64
Additional Comments .. 66

Using XEnroll with Personal CSP .. 66
Container Name .. 66
Example .. 67

CSP Configuration .. 68
11. Installation on Windows .. 69

Program Requirements ... 69
The Installation Program .. 69

Packaging .. 69
Installation Conditions .. 69
Installation Configuration .. 70
Installation Options .. 70
Messages from the Installation Program .. 70
Shortcuts .. 71
Installation Directory Tree .. 71

Web Installation Flowchart ... 71
Limitations ... 74

CSP & PKCS#11 .. 74
Plug-ins and ActiveX Controls .. 75
Upgrade and Migration .. 75
Uninstall .. 75
Controlling the Behavior of Winlogon .. 75
Event Log and Return Codes ... 75

12. Installation on Macintosh .. 78

Nexus Personal

vi

Introduction .. 78
Install .. 78
Uninstall .. 78

13. Installation on Linux .. 79
Introduction .. 79
Install .. 79
Uninstall .. 79

14. Installation on Citrix ... 80
Introduction .. 80
Install .. 80

15. Administration ... 81
Personal GUI .. 81
Administration GUI ... 81
Import and Export ... 82

Internal Store .. 82
Import Soft Tokens .. 82
Export Soft Tokens .. 83

Managing PIN Codes ... 83
Searching for Soft Token .. 84
Web Browser and Language Settings .. 85

Language ... 86
Using Personal in the Browser ... 86
Controlling Secure Sessions in the Browser .. 86

Advanced ... 87
Logging ... 87
Operating System .. 87
Installed Web Browsers .. 87
Troubleshooting Password Dialogs ... 87

Card Readers .. 87
Tray Icon ... 88
About .. 89
Help .. 89

Abbreviations ... 90
References ... 91
A. Eolas Patent ... 92

Introduction .. 92
Solution 1 .. 92
Solution 2 .. 92

B. Key Generation .. 93
Software Key Generation .. 93

C. Internal Stores .. 94
Background .. 94

File Formats ... 95
MAC Calculation .. 98

D. CSP and PKCS#11 Configuring .. 99
Platform dependencies .. 99
Implementation ... 99

E. PIN-Related Issues ... 100
PIN Caching ... 100

PIN Caching Mode .. 100
PIN Non-Caching Mode ... 100
Configuration Details ... 101

Force Login Before Sign ... 102

vii

List of Figures
1. Product Structure .. xi
1.1. Architecture ... 1
1.2. WebSigner ... 2
1.3. Registration ... 4
1.4. Authentication .. 5
1.5. Soft Token Migration .. 6
11.1. Web Installation Flowchart .. 72
15.1. Administration GUI ... 81
15.2. Import Soft Tokens .. 82
15.3. Export Soft Tokens .. 83
15.4. Managing PIN Codes ... 84
15.5. Searching for Soft Token .. 85
15.6. Web Browser and Language Settings .. 86
15.7. Advanced ... 87
15.8. Card Readers .. 88
15.9. About .. 89

viii

List of Examples
2.1. Example of an ActiveX control activation ... 8
2.2. Example of a script to activate the plug-in ... 8
2.3. Example of how to activate the Mozilla-based browser plug-in using the <OBJECT> tag
... 9
2.4. Example of a script to activate the plug-in ... 9
2.5. Example of Direct Activation using Internet Explorer (Windows only) 13
2.6. Example of Scripting using Internet Explorer (Windows only) .. 14
2.7. Example of Direct Activation using Mozilla-based browsers .. 14
2.8. Example of Scripting using Mozilla-based browsers .. 15
3.1. Example of an ActiveX control activation .. 17
3.2. Example of a script to activate the plug-in ... 17
3.3. Example of how to activate the Mozilla-based browser plug-in using the <OBJECT> tag
... 18
3.4. Example of a script to activate the plug-in ... 18
4.1. Example of an ActiveX control activation .. 25
4.2. Example of a script to activate the plug-in ... 25
4.3. Example of how to activate the Mozilla-based browser plug-in using the <OBJECT> tag
... 26
4.4. Example of a script to activate the plug-in ... 26
5.1. Example of an ActiveX control activation .. 33
5.2. Example of a script to activate the plug-in ... 33
5.3. Example of how to activate the Mozilla-based browsers plug-in using the <OBJECT> tag
... 34
5.4. Example of a script to activate the plug-in ... 34
5.5. Example of creating a certificate request (Windows only) .. 39
5.6. Example of storing the certificate response (Windows only) ... 40
5.7. Example of creating a certificate request ... 40
5.8. Example of storing the certificate response .. 41
6.1. Example of an ActiveX control activation .. 43
6.2. Example of a script to activate the plug-in ... 43
6.3. Example of how to activate the Mozilla-based browser plug-in using the <OBJECT> tag
... 44
6.4. Example of a script to activate the plug-in ... 44
7.1. Example of an ActiveX control activation .. 50
7.2. Example of a script to activate the plug-in ... 50
7.3. Example of how to activate the Mozilla-based browsers plug-in using the <OBJECT> tag
... 51
7.4. Example of a script to activate the plug-in: .. 51
7.5. Example of how to Detect and Activate the Plug-in in Internet Explorer (Windows only) 52
7.6. Example of how to Detect and Activate the Plug-in in Mozilla-based broswers 53
8.1. Example of an ActiveX control activation .. 54
8.2. Example of a script to activate the plug-in ... 54
8.3. Example of how to activate the Mozilla-based browsers plug-in using the <OBJECT> tag
... 55
8.4. Example of a script to activate the plug-in ... 55
8.5. Example of Direct Activation using Internet Explorer (Windows only): 56
8.6. Example of Scripting using Internet Explorer (Windows only) .. 56
8.7. Examples of Direct Activation using Mozilla-based browsers .. 56
8.8. Example of Scripting using Mozilla-based browsers .. 57
8.9. Example of a version string .. 58
11.1. ... 73
11.2. ... 73
11.3. ... 74
11.4. ... 74

ix

Introduction
About this Document

There are three different platform oriented versions of Personal:

• Nexus Personal for the Windows platform

• Nexus Personal for the Mac OS X platform.

• Nexus Personal for the Linux Ubuntu platform.

As far as it has been possible, they have the same functionality. All three versions are described in
this manual.

However, some functionality is only available on the Windows platform. The following functions
belong to this category:

• Cryptographic Service Provider (CSP)

• ActiveX controls

• Internet Explorer

• CryptoAPI

Warning

Whenever these functions are mentioned throughout this manual, they will refer to the
Windows platform only even though this may not be stated explicitly in the text. Other
functions or options that only apply to one of the platforms will be highlighted with remarks
like “Windows only ”, “MAC OS X only” or “Linux only ”.

Screendumps
Most screenshots in this manual are taken from Personal on one Windows platform. The layout may
look different on other Windows platforms and on the Mac OS X and Linux platforms, but the message
conveyed by the images should be clear to all users.

Product Overview
Personal is a unique software product that brings support for certificate enrollment, digital signatures
and authentication to standard Internet software.

Personal includes the following set of functionality, which is described in the following section:

• “Web Browser Plug-Ins”

• “Cryptographic APIs”

• “Administration”

• “NetDetacher”

Web Browser Plug-Ins
Personal provides a set of web browsers plug-ins, which are all implemented as ActiveX controls for
use with Internet Explorer and NPAPI plug-ins for Mozilla-based browsers.

Introduction

x

• Personal WebSigner is a plug-in for digital signatures. The plug-in provides the possibility to
digitally sign transactions.

• Personal Administration plug-in is used to manage tokens in Personal. It provides functions for
export, import and deletion of tokens as well as administration of PINs.

• Personal Registration Utility plug-in allows a user to connect to a Certification Authority to request
certificates and to store them on a software token.

• Personal Version plug-in can be used to return the installed Personal components and their versions.
By using the Version plug-in, existing versions of Personal can be detected, in order to initiate a
possible upgrade installation.

• Personal LogoutTokens plug-in logs out the current sessions to the tokens. Hence, it is possible to
control the SSL logout process at the browser from a web server script.

Note

Plug-in is used as a common term for ActiveX controls as well as NPAPI plug-ins throughout
this document.

Cryptographic APIs
• Personal PKCS#11 is an implementation of the RSA standard PKCS#11 that provides cryptographic

functions and token support. Personal PKCS#11 is optimized for use with SSL in Mozilla-based
browsers to access secure web sites.

• Personal Cryptographic Service Provider (CSP). The CSP is registered with the operating system
and it allows use of tokens through Microsoft CryptoAPI (MSCAPI). Personal CSP is optimized
for use with SSL in Internet Explorer to access secure web sites.

Administration
Personal is equipped with a graphical user interface that is used for the following administration tasks:

• Import/export of soft tokens

• Searching for disk drives with soft tokens

• Introduction

• Display and renaming of soft tokens

• PIN code management

• Web browser settings

• Diagnostics

• Language settings

NetDetacher
The purpose of NetDetacher is to control the SSL sessions and to detect and take appropriate actions
when a token is removed. The token could be a smart card being removed from a card reader or a soft
token residing on a memory stick. If the private key on the token has been used by a browser during
an SSL session, that browser should be terminated.

Browsers normally cache the session keys and this could result in a security flaw unless the session is
terminated when the token is removed. As it is not possible to kill only the ongoing SSL session(s), the

Introduction

xi

browser itself is terminated causing all its current sessions to be terminated. NetDetacher is configured
in the Personal GUI. See reference [4] for further information.

Product Structure
Personal is made up of a set of binary modules related either within a process or inter-process. An
overview of the system is given in the following figure.

Figure 1. Product Structure

Personal Process
The Personal process, or Personal application, is the main executable in the client system. The
application contains various administrative features and provides all online functions (signing,
authentication, enrollment, etc.).

It contains the following components:

Personal The main executable.

Resources The collection of language and GUI resources contained in shared object
modules, e.g. .dll, .so and .dylib.

Token-API The internal API module dynamically loaded to provide token and
cryptographic functions.

Card plug-ins A number of shared objects implementing support for specific cards and tokens.

Browser Process
The plug-in function interface is implemented as both an ActiveX object (Windows only) and a
NPAPI plug-in, loaded by the browser process, in order to support Internet Explorer and Mozilla-

Introduction

xii

based browsers. This object is thin and mainly implements communication with the main Personal
process, where the actual online functions are implemented.

Third-Party Applications
In order to support Internet Explorer (Windows only) and Mozilla-based browsers that need to
access the token or cryptographic functions during SSL handshake, Personal exposes the APIs through
Personal PKCS#11 and Personal CSP (Windows only). Even other third-party applications make use
of these APIs.

GUI Branding
The “standard” GUI of Personal can be replaced with a branded version. In a branded version of
Personal it is possible to replace any dialogs, icons or text strings with other resources. This is done
with branding modules. How the branding is done on various platforms is described in “Branding” on
page 16. For further information about how to brand Personal please contact the Personal distributor.

Environment
See the release.txt file for information on supported platforms and web browsers in Personal.

What is New in this Version
For details on new or changed features in this version/release, see Release.txt.

Where to Find the Information
In addition to the introduction in this chapter, a more detailed description of the components in Personal
is found in chapter “Functional Description Overview” on page 9.

Programmers and integrators will find descriptions of the various programming interfaces in the
following chapters:

• “WebSigner Plug-in”

• “Signer2 Plug-in”

• “Authentication Plug-in”

• “Registration Utility Plug-in”

• “Administration Plug-in”

• “LogoutTokens Plug-in”

• “Version Plug-in”

• “Personal PKCS#11”

• “Personal CSP” (Windows only).

There are three separate chapters describing installation. Chapter “Installation on Windows” on page
103, chapter “Installation on Macintosh” on page 107 and chapter “Installation on Linux” on page
109 contains information about how the installation works and what options are available to OEM
customers and integrators.

Introduction

xiii

Chapter “Administration” on page 111 contains information about the functions available via
the Personal GUI. The appendices present topics on various technical matters. Other sources of
information are listed in “References” on page 6.

Release.txt
New functions and last minute information about Personal are described in the release.txt file.

Help
Personal is provided with a help file.

How to Contact Us
Development, maintenance, and support of Personal are managed by Technology Nexus AB .

To provide feedback about our products or to suggest product enhancements, please send an e-mail
to <contact@nexussafe.com>.

1

Chapter 1. Functional Description
Overview

Architecture
The plug-ins are designed to be as small and reusable as possible. To achieve this, every plug-
in is implemented in a three-layered architecture. Instead of making the plug-ins perform specific
operations, the main task is to pass on data to the Personal application, where plug-in handlers carry
out the actual work.

The three layers are:

• Browser specific (top)

• Plug-in specific (middle)

• Platform specific (bottom)

Figure “Plug-in Architecture ” shows an example of the layers in a signing and an enrollment
component. The top layer is the actual browser specific interface, COM (Windows only) or NPAPI. The
two tiers middle layer contains the plug-in specific implementation, minimal to only handle messages.
The bottom layer is the platform specific inter-process communication implementation.

The actual signing functions are handled by the Signing plug-in handler in Personal application, and
in the same way the enrollment functions are handled by the Enrollment plug-in handler.

Figure 1.1. Architecture

Functional Description Overview

2

A plug-in communicates with the Personal application using messages sent via inter-process
communication (IPC) calls.

On the Windows platform, the Personal application is implemented as a COM-server, and the plug-
ins as COM-clients.

On the Mac OS X platform, an Apple script server is used.

On the Linux Ubuntu platform, a Unix named pipe is used.

WebSigner

The WebSigner plug-in is used to create digitally signed messages in web browsers. The plug-in is
implemented as an ActiveX control for Internet Explorer (Windows only), and as a plug-in for Mozilla-
based browsers.

The user is prompted for his PIN code to enable access to the token. When access to the token is
enabled, WebSigner will compute the signature and send a PKCS #7-SignedData message to the
specified server application. The user will be notified by an error message if the PIN code is incorrect.

When WebSigner is activated to sign plain text, the data will be displayed in a signature window.
Press the View button to see the data to be signed in a separate application window. The application,
to which the MIME type of the data is associated will be launched, and the data to be signed can be
printed or saved to file.

Figure 1.2. WebSigner

When WebSigner is activated to sign a file, the signature window is the same aswhen signing plain
text. Again the data to be signed can be viewed, saved tofile, or printed by pressing the View button.
For more information, see chapter “ WebSigner Plug-in ”.

Functional Description Overview

3

Signer2

The Signer2 plug-in is used to create digitally signed messages or files in webbrowsers. The plug-
in is implemented as an ActiveX control for Internet Explorer(Windows only), and as a plug-in for
Mozilla-basedbrowsers.

When creating a digital signature, the user is prompted for his PIN code inorder to enable access to
the token. When access to the token is enabled,Signer2 will compute the signature in XML Digital
Signature format. Theresulting signature can be sent to a web server for verification.

The Signer2 plug-in is designed to prevent so called “Man-In-The-Middle” attacks. A DNS lookup
is always performed onthe URL from which the plugin is called. The resulting IP address is included
inthe signature.

For more information, see chapter “ Signer2 Plug-in”.

Authentication

The Authentication plug-in can be used for application level authentication toweb servers. It is an
alternative to client side SSL authentication provided inweb browsers. The plug-in is implemented as
an ActiveX control for InternetExplorer (Windows only), and as a plug-in for Mozilla-basedbrowsers.

When creating a digital signature for authentication, the user is prompted forhis PIN code in order to
enable access to the token. When access to the token isenabled, Authentication plug-in will compute
the signature in XML DigitalSignature format. The resulting signature can be sent to a web server
forverification. If the signature is successfully verified, the user isauthenticated to the web server.

The Authentication plug-in is designed to prevent so called “Man-In-The-Middle” attacks. A DNS
lookup is always performed on the URL from which the plug-in iscalled. The resulting IP address
is included in the signature. TheAuthentication plug-in provides a mechanism for token removal
detection. It ispossible to register an URL to which Personal should post a message if the userremoves
his/her token within a defined time frame. For more information, see chapter “ Authentication Plug-
in”.

Registration Utility

The Registration Utility makes it possible for a user to connect to aCertification Authority, such as
Nexus Certificate Manager, to enrollcertificates and store them on a token. The plug-in is implemented
as an ActiveXcontrol for Internet Explorer (Windows only) and as aplug-in for Mozilla-based
browsers.

If a software token or key pairs are not available, they will be created. Inaddition to token and certificate
information, Registration Utility supportsPIN policies to be set for soft tokens. These policies are
enforced when theuser is trying to change the PIN codes. In addition, one-time passwords can beused,
which are sent to the Certification Authority for validation andauthorization during the enrollment
process.

The Registration Utility can be launched with a GUI, in which token name and PINcode are entered
by the user, or in silent mode, i.e. without interaction withthe user.

Functional Description Overview

4

Figure 1.3. Registration

For more information see chapter “ Registration Utility Plug-in”.

Administration Plug-in
The Administration plug-in is used to manage tokens and the token PINs via a webbrowser. The
Administration plug-in is implemented as an ActiveX control forInternet Explorer (Windows only),
and as a plug-in for Mozilla-based browsers.

The plug-in invokes the various wizards available in Personal. For moredetails, see the Help file in
Personal.

Version Plug-in
In order to retrieve information about the installed components, there is aVersion plug-in in Personal.
The plug-in is implemented as an ActiveX controlfor Internet Explorer (Windows only) and as a plug-
in forMozillabased browsers.

The Version plug-in returns the installed Personal components and their resp.versions. The output from
the Version plug-in is a formatted string with thedetails of the installed components. The version string
can either be posted toa web application or returned by a method for further processing in a script.

For more information see chapter “ Version Plug-in ”.

LogoutTokens Plug-in
The LogoutTokens plug-in allows the web server to log out a user from the tokenonce the session has
been completed. The plug-in is implemented as an ActiveXcontrol for Internet Explorer (Windows
only) and as aplug-in for Mozilla-based browsers.

After the user has finished the session and logs out from the current web site,the web server invalidates
the session key by clearing it at the server side. Thelog out from the server prevents someone else
from creating a new sessionwithout entering the PIN again.

For more information see chapter “ LogoutTokens Plug-in ”.

Cryptographic APIs
Personal supports the cryptographic APIs PKCS #11 and Microsoft CryptoAPI(Windows only). Both
APIs rely upon the cryptographicmechanisms and tokens provided by the Token API. Personal CSP
and PersonalPKCS#11 are implemented in personal.dll.

Functional Description Overview

5

Microsoft CSP

Note

This section applies to Windows only.

Personal includes a Microsoft CSP of type PROV_RSA_FULL. Hence, thetokens supported by
Personal Token-API are exposed in the MicrosoftCryptoAPI. The certificates in Personal are
imported to, and removed from,Microsoft Certificate Store by a process continuously running in the
personal.exe application.

Whenever necessary, the CSP will present a PIN dialog window, for input ofthe PIN code needed to
access the private keys in the token. This will happene.g. when accessing a secure web server that
requests client authentication.

Figure 1.4. Authentication

For more information see chapter “Personal CSP ”.

PKCS#11
Personal includes a PKCS#11 compliant library. By using this library, third party applications can
interact with the cryptographic functions and tokens in the underlying Personal Token-API.

For more information see chapter “ Personal PKCS#11” .

Installation and Updating
On Windows, Personal is installed and updated over the web. In order to achieve this, Personal
installation file is contained in a signed CAB file used for downloading and installing through Internet
Explorer, and an XPI file for Mozilla-based browser installations. These files are located on the web
server, and when a web browser accesses the site, Personal is installed if it is not already present on
the client.

By calling the Version plug-in from a web application script, the installed version will be detected,
and if it is outdated, the web browser can be redirected to a web site where an updated CAB or XPI
file is located.

For traditional installation scenarios and for web browsers that do not allow CAB/XPI files to be
executed, the personalsetup.exe file is also provided.

The Personal installation program is a dedicated application, called persinst.exe, containing all the
necessary files and the information needed to install them.

For more information see chapter “ Installation on Windows” .

Functional Description Overview

6

On Mac OS X, the application name is Personal.app. When the user starts Personal for the first time,
an installation of the different components takes place. For more information see chapter “Installation
on Macintosh ”.

On Linux, Personal is delivered as a compressed tar file. To install Personal the user unpacks the tar
file and runs an installation script present in the package. When Personal is installed it is accessible
from the Applications menu on the desktop. For more information see chapter “Installation on Linux ”.

Soft Token Migration
To allow import of soft tokens configured for iD2 Personal 2.x and SmartTrust Personal 3.x , soft
token migration is available (Windows only).

Migration of tokens on the Macintosh platform is available from Personal 3.5 and 3.6 (MAC OS X
only).

The migration process is carried out by a wizard. The wizard is either launched automatically the first
time Personal is used or any other time from the Migrate command in the File menu.

The soft tokens to be migrated are identified by the mount points in iD2 Personal 2.x and SmartTrust
Personal 3.x configuration files. The user gets the possibility to select the tokens to migrate and to
enter the PIN codes for these tokens.

Figure 1.5. Soft Token Migration

When the soft tokens are stored on the same drive as Personal is installed, the tokens are deleted upon
completed migration. When the soft tokens are stored on another drive, e.g. on a floppy, the soft token
remains on that disk.

Functional Description Overview

7

Integration with Standard Products
Personal is a software that integrates with various standard products.

Integration with Internet Explorer

Note

This section applies to the Windows platform only.

Personal includes a CSP, which adds token support to Microsoft Internet Explorer. This integration
automatically takes place during the installation.

Integration with Mozilla-Based Browsers
Personal includes a PKCS#11 module, which adds token support to Mozilla-based browsers. This
integration automatically takes place during the installation.

Branding
The branding possibility is platform dependant.

Branding on Windows platforms
On the Windows platforms, the following modules may be branded:

• A language neutral DLL, branding.dll, which contains all icons and bitmaps.

• Language dependant DLLs, which contain all language specific resources such as dialogs and text
strings.

Branding on Mac OS X
Branding and localizing Personal on Mac OS X relies on the standard Mac OS X localization and
branding features part of Mac OS X Bundles.

In Mac OS X branding and localization can be done on a binary version of the product and does not
require recompilation of the product from it source code. Branding and localization of the Personal
application is done in three specfic steps.

1. Changing string resources for localized text in the User Interface.

2. Replacing images diplayed in the User Interface.

3. Changing NIB files for moving or changing layout for components.

Branding on Linux
Branding of the user interface is not supported on Linux.

Card Reader Support
All smart card communication is done through PC/SC interface. The new standard PC/SC 2.01 Part
10 is supported. That means that PIN-Pad readers are supported through the PC/SC interface in a
standardized way.

8

Chapter 2. WebSigner Plug-in
Introduction

The WebSigner plug-in is used to create digitally signed messages in web browsers.

Plug-in Activation
The following <OBJECT> tags are used to activate the plug-in in a web browser:

ClassID 6969E7D5-223A-4982-9B79-CC4FAC2D5E5E (Windows
only)

ProgID Nexus.SignerCtl (Windows only)

Activation MIME type application/x-personal-signer

Internet Explorer

Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX control. It is activated using the
<OBJECT> tag, supplying none, some or all parameters using the <PARAM> tag.

Example 2.1. Example of an ActiveX control activation

<OBJECT ID="Signer" CLASSID="CLSID:6969E7D5-223A-4982-9B79-CC4FAC2D5E5E">
 <PARAM NAME='CharacterEncoding' VALUE='UTF8'>
 <PARAM NAME='DataToBeSigned' VALUE='Sign%20this.'>
 <PARAM NAME='PostURL' VALUE='https://server.com'>
</OBJECT>

Due to the Eolas Patent, chapter “ Appendix A — Eolas Patent ” supplies more information on how to
activate a plug-in. If the WebSigner plug-in is started using direct activation, we recommend solution
2, while solution 1 is preferred if the plug-in is scripted.

At this stage, it is not necessary to set any parameters as they can be set later using the script functions.

It is also possible for the web server to use scripting to silently detect if the plug-in is installed in
the client.

Example 2.2. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.SignerCtl");
 if(xObj) {
 document.writeln("Object installed.");
 }
 } catch (e) {
 document.writeln("Object not installed.");
 }
</SCRIPT>

WebSigner Plug-in

9

It is recommended that the <OBJECT> tag is used to create the object to be used for signing. It is
possible to use the plug-in object created using new ActiveXObject(Nexus.SignerCtl) but
this object will not be initialized correctly by Internet Explorer. In other words, the browser functions
needed for the signing operation can not be used i.e. the plug-in will not be able to post the signature
by itself. Furthermore, Internet Explorer will not be set as a parent window to the signing window.

Mozilla-Based Browsers

In Mozilla-based browsers, the plug-in is implemented using the NPAPI. It can be activated using the
<OBJECT> tag by supplying some or all parameters using the <PARAM> tag. It must be noted that it
is done in a different way than for Internet Explorer. The ClassID is not used to identify the plug-in,
but rather the activation MIME type as defined above.

Example 2.3. Example of how to activate the Mozilla-based browser plug-in
using the <OBJECT> tag

<OBJECT id="signer" type="application/x-personal-signer">
 <PARAM NAME='CharacterEncoding' VALUE='UTF8'>
 <PARAM NAME='DataToBeSigned' VALUE='Sign%20this.'>
 <PARAM NAME='PostURL' VALUE='https://server.com'>
</OBJECT>

Scripting can be used by the web server to decide whether the plug-in is installed in the browser by
checking if the activation MIME type is registered.

Example 2.4. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
 if(navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personalsigner"]) {
 if (navigator
 .mimeTypes["application/x-personal-signer"].enabledPlugin) {
 document.writeln("Plugin installed");
 }
 }
 }
 }
</SCRIPT>

Parameters
The following parameters are used in the WebSigner interface. They are case sensitive if nothing else
is stated explicitly.

Parameter Explanation

Mime-
type

The only supported MIME type is text/plain of the data to
be signed. This type effects which application program to start
if the View button in the WebSigner window is clicked. MIME
types were originally specified in RFC 1341 but improvements
have been made in other documents like RFC 1521 and RFC

WebSigner Plug-in

10

1522. If this parameter is not present, it defaults to text/
plain.

CharacterEncoding Sets the character encoding of the data to be signed, if relevant
for the chosen MIME type. The only supported character
encodings are UTF8 and platform, where platform is
the platform's default character encoding. The parameter is
optional and if no character encoding is given, default will be
platform. For Mac OS X, platform will be interpreted as
ISO 8859-1. UTF8 is recommended.

Format Defines the format of the output data. Currently, only the PKCS
#7 signed-data content type format is supported. After creation,
the signature will be URL-encoded for sending as a web form
element. The value PKCS7SIGNED specifies this format.

For full backwards compatibility with versions
of Personal prior to 3.0, the seconds
may be removed by adding _NoSeconds to
the Format parameter: PKCS7SIGNED_NoSeconds,
PKCS7SIGNED_Attached_NoSeconds, or
PKCS7SIGNED_Detached_NoSeconds. We also
recommend that you use PKCS7, however, "PKCS#7" can
still be used for backwards compatibility. As an option,
the signed data may be either included in the resulting
signature, by specifying PKCS7SIGNED_Attached, or
excluded, by specifying PKCS7SIGNED_Detached. The
parameter is optional and if no format is given, default will be
PKCS7SIGNED_Attached.

HashAlg Optional parameter specifying which hash algorithms
to use in signatures. Possible values are MD5, SHA1,
SHA224, SHA256, SHA384, SHA512, RIPEMD128, and
RIPEMD160. Default is SHA1.

Filename An optional file name to be used as default in the Save dialog
when the user presses the Save... button in the WebSigner
dialog box.

WindowName If present, this parameter specifies the name of the window
or frame used to display the server response to the HTML
post from WebSigner. WindowName is optional. If omitted,
it defaults to the window (or frame), that WebSigner was
activated in, i.e. _self.

DataToBeSigned Used as the data to be signed when the data is embedded into the
HTML page. The data to be signed must be sent URL-encoded.
WebSigner will decode the message, present it in the signature
dialog box and sign the decoded message.

PostURL Defines the URL to which WebSigner will post the signed data.
If this parameter is not defined, WebSigner will sign the data
and make it available for later retrieval using the GetSignature
script function, but it will not post the signature.

PostParams If PostURL is set then the URL-encoded string with parameters
is posted back.

SignReturnName Defines the name of the form field to contain the signature
posted by WebSigner. SignReturnName is optional and if not
present the default is SignedData.

WebSigner Plug-in

11

DataReturnName Defines the name of the form field to contain the unsigned
data posted by WebSigner. The original data will be returned.
DataReturnName is optional and if not present, WebSigner will
not post the unsigned data.

VersionReturnName Returns the version of Personal when posting the signature. See
DataReturnName and SignReturnName.

Issuers Defines the filter criteria based on Issuers used to reduce
the user's certificate choices when signing. Specific certificate
attribute search strings can be specified, separated by "," or ";"
where comma is interpreted as logical AND and semicolon as
logical OR. The following X.500 attribute abbreviations are
available: cn, g, s, t, ou, o, email, i, sn, street, l, st,
c, d, and dc . In addition, OIDs can be used.

Regular expressions using the wildcards * and ? can also
be used. * matches an arbitrary number of characters. ?
matches exactly one character. To match a string containing an
asterisk or questionmark, the wildcard must be escaped using a
backslash \. So to match an asterisk simply type *.

Example 1: The search string cn=Our CA* will filter out all
certificates issued by CAs with common name starting with
Our CA.

Example 2: 2.5.4.6=SE will filter out all Swedish
certificates.

Subjects Defines the filter criteria based on Subjects used to reduce the
user's certificate choices when signing. See Issuers.

ViewData Switches between two default signature dialog boxes handled
by WebSigner. The value false causes WebSigner to activate
a small dialog box where the data to be signed is optionally
viewed in a separate viewer application, which depends on the
MIME type parameter. The value true causes WebSigner to
activate a larger dialog box, which, in addition to the possibility
to view the data separately, also displays the data in a text area
within the dialog box.

Note

The data may be incorrectly displayed in the text area
if it contains certain control characters such as the Null
character. The default value is true.

Base64 If the signature is to be Base64-encoded before it is URL-
encoded, this parameter must be set to true. Base64 is
optional and case insensitive. If omitted or set to false, no
Base64-encoding will be performed.

IncludeCaCert Possible values are true and false (default is false). Will
include the CA certificate chain (except the rootCA) in the
signature, if available. IncludeCaCert is case insensitive.

IncludeRootCaCert Possible values are true and false (default is false). Will
include the Root CA certificate of the certificate chain in the
signature, if available. IncludeRootCaCert is case insensitive.

WebSigner Plug-in

12

UseBranding An optional parameter that specifies if WebSigner should be
branded or not. If the parameter is set to true, WebSigner
GUI will be branded if Personal installation is branded. If the
parameter is false, WebSigner GUI will not be branded, even
if the installation is branded. If this parameter is not present, it
defaults to true.

Scripting
The WebSigner profile may also be scripted using JavaScript or VB Script.

The following functions are available in Personal

Set<parameter name> int Set<parameter name>(value);

String value;

Parameters are set using the following:

The only exception is MIME type, which uses SetMimeType.
The return value will always be 0.

Sign int Sign();

int Sign() pops up the signature dialog box and signs
the data buffer. If int Sign() is successful, it returns 0
otherwise -1 is returned.

If the PostURL parameter is set, the plug-in will post the
signature by itself. The signature can also be retrieved with
GetSignature(), independent of it being posted. The
retrieved signature can be posted using script.

GetVersion String GetVersion();

String GetVersion() returns the current WebSigner
plug-in version number.

Note

To retrieve the Personal version, use the Version plug-
in.

GetSignature String GetSignature();

If Sign() is successful (return 0) then the signature will be
available by using the call GetSignature(). The signature
is always URL-encoded. If base64=true, then base64 is
used before being URL-encoded.

GetErrorString String GetErrorString();

If Sign() is not successful (return < 0) then an error string
will be available by using the call GetErrorString(). The
string is a null terminated ASCII string describing the error.

WebSigner Plug-in

13

Usage and GUI
When WebSigner is activated, either through direct activation or by using the Sign() script function,
it will display the signature dialog, allowing the user to see what he or she is about to sign. The user
chooses the signing certificate and enters his or her PIN and clicks the Sign button.

Note

It is possible to filter the certificates made selectable for signing. See parameters Issuers and
Subjects explained in “Parameters” and the examples in “ Sample Web Pages”.

If the data to be signed is plain text, it will be shown according to the appropriate character encoding
using a fixed width font, if ViewData=true.

Branding of the WebSigner GUI is possible. See “ Branding”.

Sample Web Pages
This section includes some basic sample pages showing how to activate the plug-in. For more extensive
samples, see the sample pages package.

Example 2.5. Example of Direct Activation using Internet Explorer (Windows
only)

<HTML>
 <OBJECT ID="Signer" CLASSID="CLSID:6969E7D5-223A-4982-9B79-CC4FAC2D5E5E">
 <PARAM NAME='Mime-type' VALUE='text/plain'>
 <PARAM NAME='CharacterEncoding' VALUE='UTF8'>
 <PARAM NAME='Format' VALUE='PKCS7SIGNED_Attached'>
 <PARAM NAME='FileName' VALUE='text_tbs.txt'>
 <PARAM NAME='WindowName' VALUE='_self'>
 <PARAM NAME='DataToBeSigned' VALUE='Sign%20this:%20%C3%A5%C3%A4%C3%B6'>
 <PARAM NAME='PostURL' VALUE='http://server.com/post'>
 <PARAM NAME='PostParams' VALUE='userID=42&signID=4711'>
 <PARAM NAME='SignReturnName' VALUE='SignedData'>
 <PARAM NAME='VersionReturnName' VALUE='Version'>
 <PARAM NAME='Issuers' VALUE='cn=Our CA,c=SE;cn=Your CA,c=FI'>
 <PARAM NAME='Subjects' VALUE='cn=Test,c=SE'>
 <PARAM NAME='ViewData' VALUE='true'>
 <PARAM NAME='Base64' VALUE='false'>
 <PARAM NAME='IncludeCaCert' VALUE='true'>
 <PARAM NAME='IncludeRootCaCert' VALUE='false'>
 </OBJECT>
</HTML>

WebSigner Plug-in

14

Example 2.6. Example of Scripting using Internet Explorer (Windows only)

<HTML>
 <SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.SignerCtl");
 if(xObj) {
 document.writeln("Object installed.");
 }
 } catch (e) {
 document.writeln("Object not installed.");
 }
 </SCRIPT>
<OBJECT ID="signer" CLASSID="CLSID:6969E7D5-223A-4982-9B79-CC4FAC2D5E5E">
</OBJECT>
 <SCRIPT language="JavaScript">
 signer.SetMimeType('text/plain');
 signer.SetCharacterEncoding('platform');
 signer.SetFormat('PKCS7SIGNED_Attached');
 signer.SetFileName('text_tbs.txt');
 signer.SetWindowName('_self');
 signer.SetDataToBeSigned('Sign this.');
 signer.SetSignReturnName('SignedData');
 signer.SetDataReturnName('UnsignedData');
 signer.SetVersionReturnName('Version');
 signer.SetIssuers('');
 signer.SetSubjects('');
 signer.SetViewData('true');
 signer.SetBase64('true');
 signer.SetIncludeCaCert('true');
 signer.SetIncludeRootCaCert('true');
 if (signer.Sign() == 0) {
 document.writeln(signer.GetSignature());
 } else {
 document.writeln(signer.GetErrorString());
 }
 </SCRIPT>
</HTML>

Example 2.7. Example of Direct Activation using Mozilla-based browsers

<HTML>
 <OBJECT ID="signer" type="application/x-personal-signer">
 <PARAM NAME='Mime-type' VALUE='text/plain'>
 <PARAM NAME='CharacterEncoding' VALUE='UTF8'>
 <PARAM NAME='Format' VALUE='PKCS7SIGNED_Attached'>
 <PARAM NAME='FileName' VALUE='text_tbs.txt'>
 <PARAM NAME='WindowName' VALUE='_self'>
 <PARAM NAME='DataToBeSigned' VALUE='Sign%20this:%20%C3%A5%C3%A4%C3%B6'>
 <PARAM NAME='PostURL' VALUE='http://server.com/post'>
 <PARAM NAME='PostParams' VALUE='userID=42&signID=4711'>
 <PARAM NAME='SignReturnName' VALUE='SignedData'>
 <PARAM NAME='VersionReturnName' VALUE='Version'>
 <PARAM NAME='Issuers' VALUE='cn=Our CA,c=SE;cn=Your CA,c=FI'>
 <PARAM NAME='Subjects' VALUE='cn=Test,c=SE'>
 <PARAM NAME='ViewData' VALUE='true'>
 <PARAM NAME='Base64' VALUE='false'>
 <PARAM NAME='IncludeCaCert' VALUE='true'>
 <PARAM NAME='IncludeRootCaCert' VALUE='false'>
 </OBJECT>
</HTML>

WebSigner Plug-in

15

Example 2.8. Example of Scripting using Mozilla-based browsers

<HTML>
 <SCRIPT language="JavaScript">
 if(navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personalsigner"]) {
 if (navigator
 .mimeTypes["application/x-personal-signer"].enabledPlugin) {
 document.writeln("Plugin installed");
 }
 }
 }
 }
 </SCRIPT>
<OBJECT id="signerId" type="application/x-personal-signer" length=0 height=0>
</OBJECT>
 <SCRIPT language="JavaScript">
 var signer = document.getElementById('signerId');
 signer.SetMimeType('text/plain');
 signer.SetCharacterEncoding('platform');
 signer.SetFormat('PKCS7SIGNED_Attached');
 signer.SetFileName('text_tbs.txt');
 signer.SetWindowName('_self');
 signer.SetDataToBeSigned('Sign this.');
 signer.SetSignReturnName('SignedData');
 signer.SetDataReturnName('UnsignedData');
 signer.SetVersionReturnName('Version');
 signer.SetIssuers('cn=Our CA,c=SE;cn=Your CA,c=FI');
 signer.SetSubjects('cn=Test,c=SE');
 signer.SetViewData('true');
 signer.SetBase64('true');
 signer.SetIncludeCaCert('true');
 signer.SetIncludeRootCaCert('true');
 if (signer.Sign() == 0) {
 document.writeln(signer.GetSignature())
 } else {
 document.writeln(signer.GetErrorString());
 }
 </SCRIPT>
</HTML>

Digital Signature Format
This section defines the format of the returned signature. The signature is formatted according to
"PKCS #7 v1.5 RSA Cryptographic Message Syntax Standard" and can be Base64 -encoded for
transport.

The encrypted digest within the PKCS #7 object is encrypted according to RSAES-PKCS-v1_5
(Reference PKCS #1 v2.0).

The PKCS #7 (v1.5) object is a ContentInfo object with content of type SignedData identified by the
signedData OID. The fields of the SignedData object have the following values:

Field Value

Version 1

digestAlgorithms SHA-1 object identifier

contentInfo.contentType PKCS #7 Data object identifier

contentInfo.content The signed text is included by default. The default behavior
can be overridden by choosing a different value for the Format

WebSigner Plug-in

16

parameter. [10]> PKCS7SIGNED_Attached ensures
that data is present, while PKCS7SIGNED_Detached
ensures that data is not present in the signature. The parameter
is optional and if no format is given, default will be
PKCS7SIGNED_Attached.

Note

We recommend that you use PKCS7 but "PKCS#7"
can still be used for backwards compatibility.

certificates The signing certificate is included by default. If the parameters
IncludeCaCert and IncludeRootCaCert are set to true, then the
entire certificate chain up to the root is included (if found).

Certificates may appear in any order.

Crls Not present.

SignerInfo.version 1

SignerInfo.
issuerAndSerialNumber

The issuer and serial number of the identity certificate.

SignerInfo.
digestAlgorithm

SHA-1 object identifier

SignerInfo.
authenticatedAttributes

Three attributes are present:

A PKCS #9 content type attribute, the value of which is the
same as SignData's contentInfo.contentType. In this case this
is the PKCS #7 Data object identifier.

A PKCS #9 message digest attribute, the value of which is the
message digest of the content.

A PKCS #9 signing time attribute, the value of which is the
time at which the object was signed.

Note

For full backwards compatibility with versions
of Personal prior to 3.0, the seconds may be
removed by adding _NoSeconds to the Format
parameter, (i.e. PKCS7SIGNED_NoSeconds,
PKCS7SIGNED_Attached_NoSeconds, or
PKCS7SIGNED_Detached_NoSeconds). We
also recommend that you use PKCS7, however,
"PKCS#7" can still be used for backwards
compatibility.

SignerInfo.
digestEncryptionAlgorithm

PKCS#1 rsaEncryption object identifier

SignerInfo.
encryptedDigest

The result of encrypting the message digest (BERencoded
DigestInfo) of the complete DER-encoding of the Attributes
value contained in the authenticatedAttributes field with the
signer's private key. See Reference PKCS#7, Section 9.3, with
the clarifying footnote. The data is encrypted according to
RSAESPKCS-v1_5 (Reference PKCS #1 v2.0).

17

Chapter 3. Signer2 Plug-in
Introduction

The Signer2 plug-in is used to digitally sign messages or files in web browsers. It creates an XML
signature in accordance with the BankID specification (in reference [8]).

Plug-in Activation
The following <OBJECT> tags are used to activate the plug-in in a web browser:

ClassID FB25B6FD-2119-4CEF-A915-A056184C565E (Windows
only)

ProgID Nexus.SignerV2Ctl (Windows only)

Activation MIME type application/x-personal-signer2

Internet Explorer

Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX control. It is activated using the
<OBJECT> tag. The parameters are set later using a scripting language.

Example 3.1. Example of an ActiveX control activation

<OBJECT ID="signer"
 CLASSID="CLSID:FB25B6FD-2119-4CEF-A915-A056184C565E">
</OBJECT>

It is also possible for the web server to use a scripting language to silently detect if the plug-in is
installed in the client.

Example 3.2. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.SignerV2Ctl");
 if(xObj) {
 document.writeln("Object installed.");
 }
 } catch (e) {
 document.writeln("Object not installed.");
 }
</SCRIPT>

Mozilla-Based Browsers
In Mozilla-based browsers, the plug-in is implemented using the NPAPI. It can be activated using
the <OBJECT> tag. It must be noted that it is done in a different way than for Internet Explorer. The
ClassID is not used to identify the plug-in, but rather the activation MIME type as defined above.

Signer2 Plug-in

18

Example 3.3. Example of how to activate the Mozilla-based browser plug-in
using the <OBJECT> tag

<OBJECT id="signer" type="application/x-personal-signer2">
</OBJECT>

Scripting can be used by the web server to decide whether the plug-in is installed in the browser by
checking if the activation MIME type is registered.

Example 3.4. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
 if (navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personalsigner2"]) {
 if (navigator
 .mimeTypes["application/x-personal-signer2"].enabledPlugin) {
 document.writeln("Plugin installed");
 }
 }
 }
 }
</SCRIPT>

Parameters
This section describes which parameters are defined for the Signer2 plug-in. The parameters can be
set by calling the function SetParam and retrieved by calling GetParam. To reset all parameters of the
plug-in, call the function Reset.

The parameters Issuers, Subjects and Policys when combined use the following heuristic.

• If Issuers and Subjects are set, logical AND is used to filter the result.

• If Issuers and Policys are set, logical OR is used to filter the result.

• If Subjects and Policys are set, logical AND is used to filter the result.

• If all three are set, the following apply: (Issuers AND Subjects) OR Policys

They are case sensitive if nothing else is stated explicitly.

Parameter Explanation

Issuers Defines the filter criteria based on Issuers used to reduce
the user's certificate choices when doing a signing operation.
Specific certificate attribute search strings can be specified,
separated by , or ; where comma is interpreted as logical AND
and semicolon as logical OR. The following X.500 attribute
abbreviations are available: cn, g, s, t, ou, o, email, i, sn,
street, l, st, c, d, and dc. In addition, OIDs can be used.

Regular expressions using the wildcards '*' and ? can also
be used. * matches an arbitrary number of characters. ?
matches exactly one character. To match a string containing an

Signer2 Plug-in

19

asterisk or questionmark, the wildcard must be escaped using a
backslash \. So to match an asterisk simply type *.

Example 1: The search string cn=Our CA* will filter out all
certificates issued by CAs with common name starting with
Our CA.

Example 2: 2.5.4.6=SE will filter out all Swedish
certificates.

Subjects Defines the filter criteria based on Subjects used to reduce the
user's certificate choices when doing a signing operation. See
Issuers.

Policys Defines the filter criteria based on Policys used to reduce
the user's certificate choices when doing a signing operation.
See Issuers. Note: Logical AND is not applicable for Policys.
Regular expressions are not applicable for Policys.

TextToBeSigned Mandatory. The text to be shown to the user. The value should
be Base64-encoded. Character encoding of the text is defined
by parameter TextCharacterEncoding.

TextCharacterEncoding Optional. The character encoding of the (shown) text to be
signed. Value could be ISO-8859-1 or UTF-8. Default is
UTF-8.

Nonce Mandatory. Limited UTF-8 encoded string. The value should
be Base64-encoded.

ServerTime Optional. May contain a timestamp for the reference/tracability
by the server. The value must specify the number of seconds
from midnight January 1st 1970, UTC.

NonVisibleData Optional. Size limited amount of data. Parameter value should
be Base64-encoded. Max 5Mb (after Base64-encoding).

RefDigestMethod Optional. Digest algorithm used when creating the references
in the XML signature. The value may be SHA1 or SHA256.
Default is SHA256.

SignMethod Optional. Encryption method for the signature. Today only
RSA-SHA1 is supported.

OnlyAcceptMRU An optional parameter that specifies if only the last used token
(in Authentication/Signer2 plug-ins) should be available for
signing. If set, it overrides all other filter parameters. If this
parameter is not present, it defaults to false.

Signature Only available through the function GetParam. Returns the
signature created. The result is Base64-encoded.

Version Only available through the function GetParam. Returns current
version of the Signer2 plug-in.

SupportedFileTypes Only available through the function GetParam. Returns the
supported file types and a flag indicating if there is reader
software installed that can be used to view the file.

Example 1: txt=1&pdf=0& The example above is returned
from a version of Personal that supports both .txt and .pdf, but
there is no software installed for viewing .pdf.

Signer2 Plug-in

20

Example 2: txt=1& This example is returned from a version
of BISP that only supports .txt and software is installed for
viewing files of that type.

FileContent Mandatory when signing files. The parameter value should be
Base64 encoded. The amount of data may not exceed 10MB or
an error will be returned.

FileName Mandatory when signing files. The parameter value should be
Base64 encoded. The filename may not exceed 255 characters
and should be UTF-8 before Base64 encoding.

Scripting
Following functions are exported from the signature interface

SetParam int SetParam(paramType, paramValue);

String paramType;
String paramValue;

Returns Integer Errorcode.

Function SetParam can be used to set parameters of the plug-in.

GetParam string GetParam(paramType);

String paramType;

Returns String paramValue.

If an empty string is returned, the command has failed.
The error code can be retrieved with a call to the function
GetLastError.

PerformAction int PerformAction(action);

String action;

Returns Integer Errorcode.

This function requires that the plug-in is loaded from an SSL
protected web page.

The following actions are yet available:

Action Description

Sign Generate XML signature

GetLastError int GetLastError();

Returns Integer Errorcode.

Call this function in order to retrieve the last error code of the
plug-in. Useful when for example function GetParam returns
NULL and one wants to know the reason of the error.

Reset int Reset();

Signer2 Plug-in

21

Returns Integer Errorcode.

When called, all plug-in parameters are reset.

Sample Web Pages
This section includes some basic sample pages showing how to activate the plug-in.

Internet Explorer

<HTML>
 <SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.SignerV2Ctl");
 if(xObj) {
 document.writeln("Object installed.");
 }
 } catch (e) {
 document.writeln("Object not installed.");
 }
 </SCRIPT>

 <OBJECT ID="signer2" CLASSID="CLSID:FB25B6FD-2119-4cef-A915-A056184C565E">
 </OBJECT>

 <SCRIPT language="JavaScript">
 signer2.SetParam('TextToBeSigned','SGVsbG8h');
 signer2.SetParam('Nonce','OTU4ZTZmZWU=');
 signer2.SetParam('ServerTime','1221630668');
 var res = signer2.PerformAction('Sign');
 if (res == 0) {
 document.writeln('Signature successfully created.');
 } else {
 document.writeln('Failed to create signature. Error = '+res);
 }
 </SCRIPT>
</HTML>

Mozilla-based browsers

<HTML>
 <SCRIPT language="JavaScript">
 if(navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personal-signer2"]) {
 if (navigator
 .mimeTypes["application/x-personal-signer2"].enabledPlugin) {
 document.writeln("Plugin installed.");
 }
 }
 }
 }
 </SCRIPT>

 <OBJECT id="signer2" type="application/x-personal-signer2" length=0 height=0>
 </OBJECT>

 <SCRIPT language="JavaScript">

Signer2 Plug-in

22

 signer2.SetParam('TextToBeSigned','SGVsbG8h');
 signer2.SetParam('Nonce','OTU4ZTZmZWU=');
 signer2.SetParam('ServerTime','1221630668');
 var res = signer2.PerformAction('Sign');
 if (res == 0) {
 document.writeln('Signature successfully created.');
 } else {
 document.writeln('Failed to create signature. Error = '+res);
 }
 </SCRIPT>
</HTML>

Signer2 Signature Sample
This is an example of a Signer2 signature complying with the BankID specification (see reference [8]).

<?xml version="1.0" encoding="UTF-8"?>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
 <Reference Type="http://www.bankid.com/signature/v1.0.0/types" URI="#bidSignedData">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256" />
 <DigestValue>iq6k45Unm0HhFxhx3DglUizghPvpKYpee38cesvQutA=</DigestValue>
 </Reference>
 <Reference URI="#bidKeyInfo">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256" />
 <DigestValue>OZ5gSJy9pEC2qQZkOWFR0rsCdxdAdJyx8ZU8HThxlbc=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>
M4wLxZM6M8QZ41+J5/Wj/TJ40ws6kpMzmG0mfi7UN4jRu5gwi4Hn8M1xVxP17jZ2bG5J+W5AT YSeCu
LVlshTLATdC2tPtYn86RToh64odSV2gEWNz5lSogkmf9vegVsACnIgaf0Z7mMB99XIvsWkRYGeqbsBn
LdYJu7ThRZxLyI=
 </SignatureValue>
 <KeyInfo Id="bidKeyInfo">
 <X509Data>
 <X509Certificate>
MIICgjCCAWqgAwIBAgICSXkwDQYJKoZIhvcNAQEFBQAwLDELMAkGA1UEBhMCU0UxDjAMBgNVBAoTBU5
leHVzMQ0wCwYDVQQDEwRDYSAxMB4XDTA4MDkyMzA3NTczMFoXDTEwMDkyMzA3NTczMFowGTEXMBUGA1
UEAxMOTWFsaW4gRXJpa3Nzb24wgZ8wDQYJKoZIhvcNAQEBBQA DgY0AMIGJAoGBALEgj7nDZOR9yWGK
luFXLHiuoQB15r9/sYKdjbrTLgCkZDIQ30dcNz1m fBV0NcentgI1Hc+yPkKSVzJbwGSizQdF9Mxfxb
D/JfzPvWfknAVPm7Z+Q+uSWNKmXBXb6 P88ud6E1US5Hf8OdUWhYn1r+kICwdfAPpiSB3yPJ4/lBYeX
AgMBAAGjRTBDMAkGA1UdEw QCMAAwEQYDVR0OBAoECEfJowHp23mVMBMGA1UdIwQMMAqACEju76E+CH
FUMA4GA1UdDwE B/wQEAwIGQDANBgkqhkiG9w0BAQUFAAOCAQEASwHNA8f2h2jfgfHFNzfb0ztfdgng
JT7k9I31xrn9mqmZZX+5kNKE7bFTlYT3Q373PtvPhMOdDvAClA2Y/C4Alwn0T4jURVJ/tJQfUibY6hI
4ytlprV/CaFxy/0EgKTPAhQEibIKHgFpIvpcoXQHZ51ifpqfKt+FAG+tVT2qFu/hy0xsi2PNWD/oyIL
vkjMDnkruMqtGnIc7ASEeM73sRI7qBYrEKF7OwHw6aRSnqaGPrbVTyl4muW0woQa9Q6jTVZmmSTwTHs
P19edyws48EraPQ3oaQ/p0qBe2ynx6uexaMLK22HCNHIsOL+yGGpcfa3K+cidiS6sji1SBD+frk/Q==
 </X509Certificate>
 </X509Data>
 </KeyInfo>
 <Object>
 <bankIdSignedData xmlns="http://www.bankid.com/signature/v1.0.0/types" Id="bidSignedData">
 <usrVisibleData charset="UTF-8" visible="wysiwys">SGVsbG8h</usrVisibleData>
 <srvInfo>
 <nonce>NjY4MDMyM2I=</nonce>
 <serverTime>1222158113</serverTime>
 </srvInfo>
 <clientInfo>
 <funcId>Signing</funcId>

Signer2 Plug-in

23

 <host>
 <fqdn>reagan.liljeholmen.nexus.se</fqdn>
 <ip>10.75.28.85</ip>
 </host>
 <version>
UGVyc29uYWxfZXhlPTQuMTAuMC4zMyZwZXJzaW5zdF9leGU9NC4xMC4wLjMzJkN0ZXN0X25nX2V4ZT0
xLjAuMC4xJnRva2VuYXBpX2RsbD00LjEwLjAuMjkmcGVyc29uYWxfZG xsPTQuMTAuMC4yOSZucF9wc
nNubF9kbGw9NC4xMC4wLjMzJmxuZ19zdnNlX2RsbD00LjEwLjAuMzMmY3Jkc2llbV9kbGw9NC4xMC4w
LjMzJmNyZHNldGVjX2RsbD00LjEwLjAuMzMmY3JkcHJpc21fZGxsPTQuMTAuMC4zMyZicl9zdnNlX2R
sbD0xLjQuMC45JmJyX2VudV9kbGw9MS40LjAuOSZicmFuZGluZ19kbGw9MS40LjAuOSZDU1BfSU5TVE
FMTEVEPVRSVUUmUGVyc29uYWw9NC4xMC4wLjMzJnBsYXRmb3JtPXdpbjMyJm9zX3ZlcnNpb249d2lue
HAmYmVzdF9iZWZvcmU9MTIyNDc0MDI1MyY=
 </version>
 <env>
 <ai>
 <uhi>qEYzPs1w111e0YuJf08h+yOerhg=</uhi>
 <utb>cr1</utb>
 <rpr>qkgYiWZci1q+D5PWSRe5mRCSr9U=</rpr>
 <gbvv>
YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnh5ekFCQ0RFRkdISUpKS0xNTk9QUVJTVFVWMDEyMzQ1Njc4OQ==
 </gbvv>
 </ai>
 </env>
 </clientInfo>
 </bankIdSignedData>
 </Object>
</Signature>

Error Codes
Code Description

General Return Codes

0 OK

8001 General error

8002 Operation cancelled by user

8003 Memory error

8004 Invalid parameter

8005 Failed to decode request

8006 Failed to encode request

8007 Failed to convert to/from Unicode

8008 Operation not supported

8009 Token not present

8010 Failed to determine page URL

8011 Server not trusted

8012 Parameter is not Boolean

8013 Incorrect PIN

8014 Parameter value is not numeric

8015 SSL required

8016 All parameters required for running
PerformAction not set.

8017 Parameter value should be Base64-encoded.

8018 Invalid parameter value.

8019 Plug-in may not be called with IP address.

Signer2 Plug-in

24

Code Description

8020 Function not permitted.

8021 Personal busy. (Mac OS X only)

8022 Plug-in cannot communicate with Personal

8102 PIN is blocked

8551 The file type is not supported

8552 The file type has no associated application for
preview

25

Chapter 4. Authentication Plug-in

Introduction
The Authentication plug-in can be used for logging in to web servers. It is an alternative to client side
SSL authentication provided by web browsers. It creates an XML signature in accordance with the
BankID specification. (See reference [8].)

Plug-in Activation
The following <OBJECT> tags are used to activate the plug-in in a web browser:

ClassID DD137900-E4D7-4b86-92CC-2E968F846047 (Windows
only)

ProgID Nexus.AuthenticationCtl (Windows only)

Activation MIME type application/x-personal-authentication

Internet Explorer

Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX control. It is activated using the
<OBJECT> tag.

Example 4.1. Example of an ActiveX control activation

<OBJECT ID="authentication"
 CLASSID="CLSID:DD137900-E4D7-4b86-92CC2E968F846047">
</OBJECT>

It is also possible for the web server to use scripting to silently detect if the plug-in is installed in
the client.

Example 4.2. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.AuthenticationCtl");
 if(xObj) {
 document.writeln("Object installed.");
 }
 } catch (e) {
 document.writeln("Object not installed.");
 }
</SCRIPT>

Authentication Plug-in

26

Mozilla-Based Browsers
In Mozilla-based browsers, the plug-in is implemented using the NPAPI. It can be activated using
the <OBJECT> tag. It must be noted that it is done in a different way than for Internet Explorer. The
ClassID is not used to identify the plug-in, but rather the activation MIME type as defined above.

Example 4.3. Example of how to activate the Mozilla-based browser plug-in
using the <OBJECT> tag

<OBJECT id="authentication"
 type="application/x-personal-authentication">
</OBJECT>

Scripting can be used by the web server to decide whether the plug-in is installed in the browser by
checking if the activation MIME type is registered.

Example 4.4. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
 if (navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personalauthentication"]) {
 if (navigator.mimeTypes["application/x-personalauthentication"].enabledPlugin) {
 document.writeln("Plugin installed");
 }
 }
 }
 }
</SCRIPT>

Parameters
The following parameters are used in the Authentication interface. The parameters can be set by calling
the function SetParam and retrieved by calling GetParam. To reset all parameters of the plug-in, call
the function Reset.

The parameters Issuers, Subjects and Policys when combined use the following heuristic.

• If Issuers and Subjects are set, logical AND is used to filter the result.

• If Issuers and Policys are set, logical OR is used to filter the result.

• If Subjects and Policys are set, logical AND is used to filter the result.

• If all three are set, the following apply: (Issuers AND Subjects) OR Policys

They are case sensitive if nothing else is stated explicitly. Parameter

Parameter Explanation

Issuers Defines the filter criteria based on Issuers used to reduce
the user's certificate choices when doing an authentication
operation. Specific certificate attribute search strings can be
specified, separated by , or ; where comma is interpreted

Authentication Plug-in

27

as logical AND and semicolon as logical OR. The following
X.500 attribute abbreviations are available: cn, g, s, t, ou,
o, email, i, sn, street, l, st, c, d, and dc. In addition,
OIDs can be used.

Regular expressions using the wildcards * and ? can also
be used. * matches an arbitrary number of characters. ?
matches exactly one character. To match a string containing an
asterisk or questionmark, the wildcard must be escaped using a
backslash \. So to match an asterisk simply type *.

Example 1: The search string cn=Our CA* will filter out all
certificates issued by CAs with common name starting with
Our CA.

Example 2: 2.5.4.6=SE will filter out all Swedish
certificates.

Subjects Defines the filter criteria based on Subjects used to reduce
the user's certificate choices when doing an authentication
operation. See Issuers.

Policys Defines the filter criteria based on Policys used to reduce
the user's certificate choices when doing an authentication
operation. See Issuers.

Note

Logical AND is not applicable for Policys.

Regular expressions are not applicable for Policys.

TokenRemovedURL Optional (mandatory if TokenRemovedTimeout is used).
Specifies the URL to which the client should make a connect
if the user removes the token used when authenticating.

This parameter can also be set after a successful authentication
and have immediate effect for the token used for the
authentication (If TokenRemovedTimeout is also set). This
is only possible within a pre-defined time frame after the
authentication. After that time frame, a new authentication is
required in order to set this parameter.

TokenRemovedTimeout Optional (mandatory if TokenRemovedURL is used). Specifies
a time in minutes (1–720) after which the function for
disconnected token should no longer be activated. This means
that if the user disconnects his/her token after the number
of minutes specified by this parameter, no reconnection to
TokenRemovedURL will be made.

This parameter can also be set after a successful authentication
and have immediate effect for the token used for the
authentication (If TokenRemovedURL is also set). This is
only possible within a predefined time frame after the
authentication. After that time frame, a new authentication is
required in order to set this parameter.

Challenge Mandatory. Contains the value to be signed as part of the
authentication. Limited UTF-8 string, which has to be Base64-
encoded.

Authentication Plug-in

28

ServerTime Optional. May contain a timestamp for the reference/tracability
by the server. The value should specify the number of seconds
from midnight January 1st 1970, UTC.

RefDigestMethod Optional. Digest algorithm used when creating the references
in the XML signature. The value may be SHA1 or SHA256.
Default is SHA256.

SignMethod Optional. Encryption method for the signature. Today only
RSA-SHA1 is supported.

Signature Only available through the function GetParam. Returns the
signature created. The result is Base64-encoded.

Scripting
Following functions are exported from the authentication interface

SetParam int SetParam(paramType, paramValue);

String paramType;
String paramValue;

Returns Integer Errorcode.

Function SetParam can be used to set parameters of the plug-in.

GetParam string GetParam(paramType);

String paramType ;

Returns String paramValue.

If an empty string is returned, the command has failed.
The error code can be retrieved with a call to the function
GetLastError.

PerformAction int PerformAction(action);

String action;

Returns Integer Errorcode.

This function requires that the plug-in is loaded from an SSL
protected web page.

The following actions are yet available:

Action Description

Authenticate Generate authentication
signature

UnregisterURL Remove token removal
detection for a given
TokenRemovedURL

GetLastError int GetLastError();

Returns Integer Errorcode.

Authentication Plug-in

29

Call this function in order to retrieve the last error code of the
plug-in. Useful when for example function GetParam returns
NULL and one wants to know the reason of the error.

Reset int Reset();

Reset returns Integer Errorcode.

When called, all plug-in parameters are reset.

Sample Web Pages
This section includes some basic sample pages showing how to activate the plug-in.

Internet Explorer

<HTML>
 <SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.AuthenticationCtl");
 if(xObj) {
 document.writeln("Object installed.");
 }
 } catch (e) {
 document.writeln("Object not installed.");
 }
 </SCRIPT>

 <OBJECT ID="authenticate"
 CLASSID="CLSID:DD137900-E4D7-4b86-92CC2E968F846047">
 </OBJECT>

 <SCRIPT language="JavaScript">
 authenticate.SetParam('TokenRemovedURL',
 'aHR0cDovL3Rlc3Quc2VydmVyLmNvbS' +
 '9Mb2dpbj9hY3Rpb249cmVtb3ZlZCZpZD0x');
 authenticate.SetParam('TokenRemovedTimeout','1');
 authenticate.SetParam('Challenge','YmRhNWIyMTc=');
 authenticate.SetParam('ServerTime','1221629266');
 var res = authenticate.PerformAction('Authenticate');
 if (res == 0)
 {
 document.writeln('Authentication signature successfully created.');
 } else {
 document.writeln('Failed to create authentication signature. Error = '+res);
 }
 </SCRIPT>
</HTML>

Mozilla-based browsers

<SCRIPT language="JavaScript">
 if(navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personalauthentication"]) {
 if (navigator
 .mimeTypes["application/x-personalauthentication"]

Authentication Plug-in

30

 .enabledPlugin) {
 document.writeln("Plugin installed.");
 }
 }
 }
 }
</SCRIPT>
<OBJECT id="authenticate" type="application/x-personal-authentication"
 length=0 height=0>
</OBJECT>
<SCRIPT language="JavaScript">
 authenticate.SetParam('TokenRemovedURL',
 'aHR0cDovL3Rlc3Quc2VydmVyLmNvbS' +
 '9Mb2dpbj9hY3Rpb249cmVtb3ZlZCZpZD0x');
 authenticate.SetParam('TokenRemovedTimeout','1');
 authenticate.SetParam('Challenge','YmRhNWIyMTc=');
 authenticate.SetParam('ServerTime','1221629266');
 var res = authenticate.PerformAction('Authenticate');
 if (res == 0)
 {
 document.writeln('Authentication signature successfully created.');
 } else {
 document.writeln('Failed to create authentication signature. Error = '+res);
 }
</SCRIPT>
</HTML>

Authentication Signature Sample
This is an example of an Authentication signature complying with the BankID specification (see
reference [8]).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">
</CanonicalizationMethod>
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1">
</SignatureMethod>
<Reference Type="http://www.bankid.com/signature/v1.0.0/types" URI="#bidSignedData">
<Transforms>
<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">
</Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"></DigestMethod>
<DigestValue>bHOdj4Rgn7wn395SP5nc52R71B4Cex3aKW1alD+cGqQ=</DigestValue>
</Reference>
<Reference URI="#bidKeyInfo">
<Transforms>
<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315">
</Transform>
</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"></DigestMethod>
<DigestValue>nKZsSsN0+98sQw72xjcp0S+pf7+Cnwrzgyb9rywjeBM=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>
hPkmF23MnW8fdSBecwhhiYAWHyVDnxv18lv83BZmxZv/xywjSJOTB5OP9rKwCZdYDqMwFLwm3
zo23Yxmb9u5nQ3fgh2YlDpZ5AqeQRfhGyqdXwiu0LWW58jenCFBYny8gciUeiidq+DRFhuiM7
9QcoQ3WQ39AYYCKb360fC6+Kw=
</SignatureValue>
<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#" Id="bidKeyInfo">
<X509Data>
<X509Certificate>
MIICgjCCAWqgAwIBAgICSXgwDQYJKoZIhvcNAQEFBQAwLDELMAkGA1UEBhMCU0UxDjAMB
gNVBAoTBU5leHVzMQ0wCwYDVQQDEwRDYSAxMB4XDTA4MDkyMzA3NTcyOVoXDTEwMDkyMz
A3NTcyOVowGTEXMBUGA1UEAxMOTWFsaW4gRXJpa3Nzb24wgZ8wDQYJKoZIhvcNAQEBBQA

Authentication Plug-in

31

DgY0AMIGJAoGBAMrB5J5+fiA2LKg6ZhXd02A/ZEi3V5rPPalNUGmpJfUVwNdm+p9J6oAB
rPUHTKWr6wgv2BHbCkigbpQ6Q2Q2MCzewXmy6eig3fZHN+i6rtGHvdNMh4eQeywDL4aLf
NjLGFriAoA0ectlnk/NzD0t1uQf/p4xQ0wyhIXIuQ0MGXP9AgMBAAGjRTBDMAkGA1UdEw
QCMAAwEQYDVR0OBAoECE5hhMhi3FdjMBMGA1UdIwQMMAqACEju76E+CHFUMA4GA1UdDwE
B/wQEAwIFoDANBgkqhkiG9w0BAQUFAAOCAQEAb4d3yCTVE9f7HbzHZagHgzAZ7IdQFf/t
wp9MzMoVbHs/bgrt/WttGWS1Go5dVHu2veeX08sVaHceg47WzgZCCYbLa2V9jRSCrP45T
fyBclk7J6qHm8xY3dVFndbVlAYESSqJS0bYkD/Cm+mPpKM8Fkhd7+s2enPFMmhyHrtOde
S91G84J7Ft2DSpCtbj4xjWhrrd+Vd2pcfHbPlWm8kCDyP+gzHR04xC+NIjdrm8vY1F3t+
gGRFhf4m1st0k+3GprL1rurg2TcCA9jkS0FjU8xmRB05wSV/rDjfHrt3Xif/cfSN9Ys28
z0iD3nFeJZfu4Xvi2EBMSW0Od+y1gv9WJg==
</X509Certificate>
</X509Data>
</KeyInfo>
<Object>
<bankIdSignedData xmlns="http://www.bankid.com/signature/v1.0.0/types"
Id="bidSignedData">
<srvInfo>
<nonce>NjZiNmQ3MzE=</nonce>
<serverTime>1222156707</serverTime>
</srvInfo>
<clientInfo>
<funcId>Identification</funcId>
<host>
<fqdn>reagan.liljeholmen.nexus.se</fqdn>
<ip>10.75.28.85</ip>
</host>
<version>
UGVyc29uYWxfZXhlPTQuMTAuMC4zMyZwZXJzaW5zdF9leGU9NC4xMC4wLjMzJkN0ZXN
0X25nX2V4ZT0xLjAuMC4xJnRva2VuYXBpX2RsbD00LjEwLjAuMjkmcGVyc29uYWxfZG
xsPTQuMTAuMC4yOSZucF9wcnNubF9kbGw9NC4xMC4wLjMzJmxuZ19zdnNlX2RsbD00L
jEwLjAuMzMmY3Jkc2llbV9kbGw9NC4xMC4wLjMzJmNyZHNldGVjX2RsbD00LjEwLjAu
MzMmY3JkcHJpc21fZGxsPTQuMTAuMC4zMyZicl9zdnNlX2RsbD0xLjQuMC45JmJyX2V
udV9kbGw9MS40LjAuOSZicmFuZGluZ19kbGw9MS40LjAuOSZDU1BfSU5TVEFMTEVEPV
RSVUUmUGVyc29uYWw9NC4xMC4wLjMzJnBsYXRmb3JtPXdpbjMyJm9zX3ZlcnNpb249d
2lueHAmYmVzdF9iZWZvcmU9MTIyNDc0MDI1MyY=
</version>
<env>
<ai>
<uhi>qEYzPs1w111e0YuJf08h+yOerhg=</uhi>
<utb>cr1</utb>
<rpr>qkgYiWZci1q+D5PWSRe5mRCSr9U=</rpr>
<gbvv>YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnh5ekFCQ0RFRkdISUpKS0xNTk9QUVJTVFVWM
DEyMzQ1Njc4OQ==</gbvv>
</ai>
</env>
</clientInfo>
</bankIdSignedData>
</Object>
</Signature>

Error codes
Code Description

General Return Codes

0 OK

8001 General error

8002 Operation cancelled by user

8003 Memory error

8004 Invalid parameter

8005 Failed to decode request

8006 Failed to encode request

8007 Failed to convert to/from Unicode

Authentication Plug-in

32

Code Description

8008 Operation not supported

8009 Token not present

8010 Failed to determine page URL

8011 Server not trusted

8012 Parameter is not Boolean

8013 Incorrect PIN

8014 Parameter value is not numeric

8015 SSL required

8016 All parameters required for running
PerformAction not set.

8017 Parameter value should be Base64-encoded.

8018 Invalid parameter value.

8019 Plug-in may not be called with IP address.

8020 Function not permitted.

8021 Personal busy. (Mac OS X only)

8022 Plug-in cannot communicate with Personal

8102 PIN is blocked

Authentication plug-in specific Return Codes

8501 Such TokenRemovedURL not registered. Can be
returned when action UnregisterURL is called.

8502 The parameters TokenRemovedURL and
TokenRemovedTimeout are set too late after
the last successful authentication. A new
authentication is required in order to set these
parameters.

33

Chapter 5. Registration Utility Plug-in
Introduction

The Registration Utility makes it possible to allow a user to connect to a Certification Authority, such
as Nexus Certificate Manager, to request certificates and to store them on a token. If a software token
or key pairs is not available, they are created.

Plug-in Activation
The following <OBJECT> tags are used to activate the plug-in in a web browser:

ClassID AC7AEFE1-E745-4D21-881C-D7B6F22275B8 (Windows
only)

ProgID Nexus.RegUtilCtl (Windows only)

Activation MIME type application/x-personal-regutil

Internet Explorer

Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX control. It is activated using the
<OBJECT> tag. The parameters are set later using a scripting language.

Example 5.1. Example of an ActiveX control activation

<OBJECT ID="RegUtil"
 CLASSID="CLSID:AC7AEFE1-E745-4D21-881C-D7B6F22275B8">
</OBJECT>

It is also possible for the web server to use a scripting language to silently detect if the plug-in is
installed in the client.

Example 5.2. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.RegUtilCtl");
 if(xObj) {
 document.writeln("Object installed.");
 }
 } catch (e) {
 document.writeln("Object not installed.");
 }
</SCRIPT>

This ActiveXObject should not be used for enrollment. Instead the <OBJECT> tag must be used, as
described above, for the object to be initialized correctly.

Registration Utility Plug-in

34

The Registration Utility plug-in is scripted only; therefore, we recommend that Solution 1 is used.
Refer to “ Appendix A — Eolas Patent ” for more information.

Mozilla-Based Browsers
In Mozilla-based browsers, the plug-in is implemented using the NPAPI. It can be activated using the
<OBJECT> tag. It should be noted that this is done in a different way than for Internet Explorer. The
ClassID is not used to identify the plug-in, but rather the activation MIME type as defined above.

Example 5.3. Example of how to activate the Mozilla-based browsers plug-in
using the <OBJECT> tag

<OBJECT ID="RegUtil" TYPE="application/x-personal-regutil">
</OBJECT>

A script can be used by the web server to decide whether the plug-in is installed in the browser by
checking if the activation MIME type is registered.

Example 5.4. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
 if(navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personalregutil"]) {
 if (navigator
 .mimeTypes["application/x-personal-regutil"].enabledPlugin) {
 document.writeln("Plugin installed");
 }
 }
 }
 }
</SCRIPT>

Parameters
Parameters available to SetParam are as follows

Type Parameter Value

tokenName Name of token to be created. If the tokenName and PIN are
not set, Personal will pop-up a dialog for the user to input the
data. It is not possible to just use tokenName parameter without
using the PIN parameter.

tokenType Specifies token type to enrol to.

The following token types are supported: pkcs12 and
internalstore.

Default is internalstore.

pin PIN code protecting the keys in the token to be created. If the
PIN and tokenName are not set, Personal will pop-up a dialog
for the user to input the data. It is not possible to just use PIN
parameter without using the tokenName parameter.

Registration Utility Plug-in

35

keySize Key size specified in bits. For example, 1024 or 2048.

keyUsage Comma separated list of key usage strings according to X.509.
Available values are: digitalSignature, keyEncipherment,
nonRepudiation, and contentCommitment.

Example, "digitalSignature,keyEncipherment".

oneTimePassword One time password that will be verified on the server.

subjectDN User's Distinguished Name in the certificate request. The
following X.500 attribute abbreviations are available: CN, N, G,
S, T, OU, O, DMD, SN, UI, STREET, L, ST, C, EM, D, and OID.

Example "CN=Bob,C=SE" or "OID.2.5.4.3=Kalle".

hashAlg Optional hash algorithm parameter to be used when signing
request.

Available values are MD5, SHA1, SHA224, SHA256,
SHA384, SHA512, RIPEMD128, and RIPEMD160. Default
is SHA1.

maxLen Maximum allowed PIN length.

minLen Minimum allowed PIN length.

minChars Minimum number of characters that should be entered in a PIN.

minDigits Minimum number of digits that should be entered in a PIN.

rfc2797cmcoid An optional parameter. If set to true, it uses PKIData
OID defined in RFC2797. The OID will be id-cct-
PKIData ::= {1.3.6.1.5.5.7.12.2}.

Default is false.

Scripting
The following functions are implemented

SetParam int SetParam(paramType, paramValue);

String paramType;
String paramValue;

Returns Integer Errorcode.

Sets a parameter.

GetParam String GetParam(paramType);

String paramType;

Returns String paramValue.

If an empty string is returned, the command has failed. The
error code can be retrieved with GetLastError().

ValidatePin int ValidatePin(PIN);

Registration Utility Plug-in

36

String PIN;

Returns Integer Errorcode.

The PIN is checked according to the PIN policy previously set.
The policy is checked against the following parameters:

• minLen

• minChars

• maxLen

• minDigits

• compareStr

• maxCompareInRow

• maxEqualInRow

If no PIN policy has been specified, any PINs will be accepted.
This is the default policy.

Note

The method remains for backwards compatibility. We
recommend that the application handles the token
name and PIN input data.

InitRequest int InitRequest(requestType);

String requestType;

Returns Integer Errorcode.

InitRequest tells the plug-in that a request of the given type
should be created when CreateRequest is called. It stores the
given parameters, so they are available for the actual creation.

The value of requestType can be either pkcs10 or cmc
(default if not provided is “cmc”). To generate a PKCS #10
request, the parameters that must be set using SetParam are as
follows:

• keySize

• keyUsage

• subjectDN

In addition, hashAlg can be used optionally. To generate a
CMC request, the parameters that must be set are as follows:

• oneTimePassword

In addition, InitRequest with requestType equal to
pkcs10 must have been called twice before initializing the
creation of the CMC request.

CreateRequest string CreateRequest();

Registration Utility Plug-in

37

Returns String Base64-encoded certificate request.

This function creates the request previously specified by
InitRequest. If the request previously specified is a CMC
request, it also creates the two PKCS #10 requests as specified
before and puts them into the CMC request.

Internally a new token is created, with one key pair for each
PKCS #10 request that has been specified. If the tokenName
and PIN parameters have not been set, Personal will present the
user with a dialog, allowing him or her to enter a token name,
and set a PIN for the token. The user must then enter a PIN
which matches the specified PIN policy. If another token with
the same name already exists, a number will be appended to the
name in order to create a unique name.

If the tokenName and PIN parameters have been set, no dialog
will be presented. If the PIN does not match the PIN policy, the
function will fail. If a token with the same name already exists,
a unique name will be created in the same way as specified
above.

If an empty string is returned, the command has failed. The
error code can be retrieved with GetLastError().

StoreCertificates int StoreCertificates(type,
certificateBlob);

String type;
String certificateBlob;

Returns Integer Errorcode.

The type must be p7c for a PKCS #7 certificate blob. The
certificate BLOB should be a Base64-encoded response to
the certificate request. The certificates will be stored in the
appropriate token containing the public key(s) associated with
the issued certificates. If no matching public key is found, it
will not be possible to store the certificates. This means that if
a CA certificate should be stored in a token, it must be bundled
together with the user's certificates (which always should be
the case).

Note

Personal does not support storing of Root CA
certificates.

GetLastError int GetLastError();

Returns Integer Errorcode.

GetResponse string GetResponse(challenge);

String challenge;

Returns String.

Registration Utility Plug-in

38

GetResponse is called with a Base64 encoded challenge string
to do client verification. Personal calculates the response and
returns this as a Base64 encoded string. If an error occurred an
empty string will be returned.

Reset int Reset();

Returns Integer Errorcode.

Resets all parameters.

Usage and GUI

Creating a Token

The web page sets the necessary parameters and calls InitRequest with request type set to pkcs10,
to tell the plug-in that a PKCS #10 request should be created using the given parameter set.

The web page script might then change some parameters, for instance, keyUsage, and call InitRequest
again, to tell the plug-in that a second PKCS #10 request should be created. If this is done, InitRequest
must also be called a third time, but this time with type cmc, to specify that the two PKCS #10 requests
should be packaged in a CMC request.

When the CreateRequest function is called, the plug-in will ask the Personal application to create a
new token with the necessary key pairs and the specified requests. Please note that before this no
communication between the plug-in and the Personal application had taken place. If the latest call to
InitRequest specifies a PKCS #10 request, a token containing one key pair will be created, and one
PKCS #10 request will be returned.

If the latest call to InitRequest specifies a CMC request, a new token containing two key pairs will be
created and a CMC request containing two PKCS #10 requests will be returned.

If the tokenName and PIN parameters have not been set, Personal will present the user with a dialog,
allowing him or her to enter a token name, and set a PIN for the token. The user must then enter a
PIN which matches the specified PIN policy. If another token with the same name already exists, a
number will be appended to the name in order to create a unique name.

If the tokenName and PIN parameters have been set, no dialog will be presented. If the PIN does not
match the PIN policy, the function will fail. If a token with the same name already exists, a unique
name will be created in the same way as specified above.

If the web page has set a PIN policy, using the available parameters, this will be stored in the token,
and applied to the PIN that the user has set.

It is also possible to use the ValidatePIN method to verify a PIN against the specified PIN policy.
However, this is not recommended as it is better for the application to handle the PIN input instead.

Store Certificates

The application will search for the token containing the same public keys as the ones in the certificates,
and choose that token for storage of the certificates. Thus, no token name has to be entered at this stage.

If no matching public key is found, it will not be possible to store the certificates. This means that
if a CA certificate should be stored in a token, it must be bundled together with the user certificates
which always should be the case.

Registration Utility Plug-in

39

PIN Policy

If no PIN policy is set, the minimum length of the PIN will be set to 1 and the maximum to 255
characters. There will be no restrictions on the PIN.

If the web page specifies a PIN policy, this policy will be stored in the created token. This means that
if the user changes the PIN, he or she will still have to follow the PIN policy.

However, this is only true as long as the token is kept in the Internal Store. If the token is exported to
a PKCS #12 file, the PIN policy will be lost, since the PKCS #12 standard does not include any PIN
policies. If the user then imports the PKCS #12 file into a Personal Internal Store again, the newly
created token will not have any PIN policy restrictions.

Sample Web Pages
This section includes some basic sample pages, showing how to activate the plug-in.

Internet Explorer

Example 5.5. Example of creating a certificate request (Windows only)

<HTML>
 <SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.RegUtilCtl");
 if(xObj) {
 document.writeln("Object installed.");
 }
 } catch (e) {
 document.writeln("Object not installed.");
 }
 </SCRIPT>

 <OBJECT ID="regutil"
 CLASSID="CLSID:AC7AEFE1-E745-4D21-881C-D7B6F22275B8">
 </OBJECT>

 <SCRIPT language="JavaScript">
 regutil.SetParam('keySize','2048');
 regutil.SetParam('keyUsage','digitalSignature,keyEncipherment');
 regutil.SetParam('subjectDN','CN=BOB,O=Nexus,C=SE');
 regutil.InitRequest('pkcs10');
 regutil.SetParam('keyUsage','nonRepudiation');
 regutil.InitRequest('pkcs10');
 regutil.SetParam('oneTimePassword','1234');
 regutil.SetParam('maxLen','16');
 regutil.SetParam('minLen','4');
 regutil.SetParam('minChars','1');
 regutil.SetParam('minDigits','1');
 regutil.SetParam('compareStr',"qwerty");
 regutil.SetParam('maxCompareInRow','3');
 regutil.SetParam('maxEqualInRow','2');
 regutil.InitRequest('cmc');
 document.writeln(regutil.CreateRequest());
 document.writeln(regutil.GetLastError());
 </SCRIPT>
</HTML>

Registration Utility Plug-in

40

Example 5.6. Example of storing the certificate response (Windows only)

<HTML>
 <OBJECT ID="regutil"
 CLASSID="CLSID:AC7AEFE1-E745-4D21-881C-D7B6F22275B8">
 </OBJECT>
 <SCRIPT language="JavaScript">
 regutil.StoreCertificates('p7c', <base64 encoded PKCS#7 certificate blob>);
 </SCRIPT>
</HTML>

Mozilla-based browsers

Example 5.7. Example of creating a certificate request

<HTML>
 <SCRIPT language="JavaScript">
 if(navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personalregutil"]) {
 if (navigator.mimeTypes["application/x-personal-regutil"].enabledPlugin)
 {
 document.writeln("Plugin installed");
 }
 }
 }
 }
 </SCRIPT>

 <OBJECT ID="regutilId"
 TYPE="application/x-personal-regutil">
 </OBJECT>

 <SCRIPT language="JavaScript">
 var regutil = document.getElementById('regutilId');
 regutil.SetParam('keySize','2048');
 regutil.SetParam('keyUsage','digitalSignature,keyEncipherment');
 regutil.SetParam('subjectDN','CN=BOB,O=Nexus,C=SE');
 regutil.InitRequest('pkcs10');
 regutil.SetParam('keyUsage','nonRepudiation');
 regutil.InitRequest('pkcs10');
 regutil.SetParam('oneTimePassword','1234');
 regutil.SetParam('maxLen','16');
 regutil.SetParam('minLen','4');
 regutil.SetParam('minChars','1');
 regutil.SetParam('minDigits','1');
 regutil.SetParam('compareStr',"qwerty");
 regutil.SetParam('maxCompareInRow','3');
 regutil.SetParam('maxEqualInRow','2');
 regutil.InitRequest('cmc');
 document.writeln(regutil.CreateRequest());
 document.writeln(regutil.GetLastError());
 </SCRIPT>
</HTML>

Registration Utility Plug-in

41

Example 5.8. Example of storing the certificate response

<HTML>
 <OBJECT ID="regutilId"
 TYPE="application/x-personal-regutil">
 </OBJECT>
 <SCRIPT language="JavaScript">
 var regutil = document.getElementById('regutilId');
 regutil.StoreCertificates('p7c', <base64 encoded PKCS#7 certificate blob>);
 </SCRIPT>
</HTML>

Error Codes
Code Description

0 OK

1 The call to StoreCertificate failed as a certificate
could not be stored. The public key does not match
that of any existing token.

630 PIN is too long or too short

631 Too few letters in the PIN

632 Too few digits in the PIN

633 Too many equal characters in a row

634 Too many characters from CompareStr exist in a
row

640 Invalid parameter

641 Memory error

662 Failed to convert to/from UNICODE

666 Failed to convert to/from Base64

668 Failed to encode the request

669 Failed to decode the request

671 Failed to write certificates

672 subjectDn parameter has incorrect syntax

999 General Error

1024 Key length is not specified

1025 Key usage is not specified

1026 Invalid key usage

1027 PIN policy specification is inconsistent (e.g.
minLen = 5 and maxLen = 4)

1028 Parameter is not numeric

1029 SetParam(HashAlg) was called with unknown
algorithm name

1030 CreateRequest called without previous call to
InitRequest

1031 An unsupported key length of less than 368 bits
have used

1032 Parameter is not boolean.

Registration Utility Plug-in

42

Code Description

1033 Token type is invalid.

1034 Operation cancelled by the user.

1035 Duplicate token name.

1036 Plug-in cannot communicate with Personal

Format of a CMC Request and Response
For detailed information about CMC refer to [5].

Request
The new content object PKIData is used as the body of the full PKI request message. PKIData can
be defined in two ways.

Default is

id-ct-PKIData ::= { 1.3.6.1.5.5.7.5.2 }

When rfc2797cmcoid = true then

id-ct-PKIData ::= { 1.3.6.1.5.5.7.12.2 }

The ASN.1 contents is as follows:

• controlSequence will be empty.

• reqSequence consists of a sequence of PKCS#10 requests.

• cmsSequence will be empty.

• otherMsgSequence will contain the OID described in “One Time Password ” .

One Time Password
The One Time Password (OTP) is stored in the otherMsgSequence field. It is identified by:

id-pin-code OBJECT IDENTIFIER ::= { 1.2.752.36.4.1.1
 }

and is defined by:

PinCode ::= IA5String

Response
The certificates are always returned as a simple PKI response, i.e. a PKCS#7 signedData object.

43

Chapter 6. Administration Plug-in

Introduction
The Administration plug-in is used to manage tokens in Personal. It makes it possible to export, import
and delete tokens as well as to administrate PINs. In the branding module (see “ Branding” , it is
possible to configure the plug-in to only be run from a specific host.

Plug-in Activation
The following <OBJECT> tags are used to activate the plug-in in a web browser:

ClassID 524B98BC-7B94-48CB-8F6E-CEC7D1B64522 (Windows
only)

ProgID Nexus.WebAdminCtl (Windows only)

Activation MIME type application/x-personal-webadmin

Internet Explorer

Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX control. It is activated using the
<OBJECT> tag. The parameters are set later using a scripting language.

Example 6.1. Example of an ActiveX control activation

<OBJECT ID="webadmin"
 CLASSID="CLSID:524B98BC-7B94-48CB-8F6E-CEC7D1B64522">
</OBJECT>

It is also possible for the web server to use a scripting language to silently detect if the plug-in is
installed in the client.

Example 6.2. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
try {
 var xObj = new ActiveXObject("Nexus.WebAdminCtl");
 if(xObj) {
 document.writeln("Object installed.");
 }
} catch (e) {
 document.writeln("Object not installed.");
}
</SCRIPT>

Administration Plug-in

44

This ActiveXObject should not be used for administration. Instead the <OBJECT> tag must be used,
as described above, for the object to be initialized correctly.

The Administration plug-in is scripted only; therefore, we recommend that Solution 1 is used. Refer
to “ Appendix A — Eolas Patent”.

Mozilla-Based Browsers
In Mozilla-based browsers, the plug-in is implemented using the NPAPI. It can be activated using the
<OBJECT> tag by supplying some or all parameters using the <PARAM> tag. It must be noted that it
is done in a different way than for Internet Explorer. The ClassID is not used to identify the plug-in,
but rather the activation MIME type as defined above.

Example 6.3. Example of how to activate the Mozilla-based browser plug-in
using the <OBJECT> tag

<OBJECT id="webadmin"
 type="application/x-personal-webadmin">
</OBJECT>

Scripting can be used by the web server to decide whether the plug-in is installed in the browser by
checking if the activation MIME type is registered.

Example 6.4. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
if (navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personalwebadmin"]) {
 if (navigator.mimeTypes["application/x-personalwebadmin"].enabledPlugin) {
 document.writeln("Plugin installed");
 }
 }
 }
}
</SCRIPT>

Parameters
This section describes which parameters are defined for the Administration plug-in. The parameters
can be set by calling the function SetParam. To reset all parameters of the plug-in, call the function
Reset.

The parameters are case sensitive if nothing else is stated explicitly.

Parameter Description

Issuers Defines the filter criteria based on Issuers used to reduce
the user's certificate choices when doing an administrative
operation. Specific certificate attribute search strings can be
specified, separated by "," or ";" where comma is interpreted
as logical AND and semicolon as logical OR. The following
X.500 attribute abbreviations are available: cn, g, s, t, ou,

Administration Plug-in

45

o, email, i, sn, street, l, st, c, d, and dc. In addition,
OIDs can be used.

Regular expressions using the wildcards * and ? can also
be used. * matches an arbitrary number of characters. ?
matches exactly one character. To match a string containing an
asterisk or questionmark, the wildcard must be escaped using a
backslash \. So to match an asterisk simply type *.

Example 1: The search string cn=Our CA* will filter out all
certificates issued by CAs with common name starting with
Our CA.

Example 2: 2.5.4.6=SE will filter out all Swedish
certificates.

Subjects Defines the filter criteria based on Subjects used to reduce
the user's certificate choices when doing an administrative
operation. See Issuers.

PinOperation Optional parameter that specifies which kind of PIN operation
should be performed. Following values are supported:

changepin Change PIN operation will be performed.

unblockpin Unblock PIN operation will be performed.
If the parameter is not set the PIN administration operation
will be initialized so that both change and unblock can be
performed.

challenge Base64 encoded challenge string. Used to set the challenge
before a call to PerformAction with parameter getResponse is
called.

bbdInfo Base64 encoded xml-data that is used when a following call to
PerformAction with parameter renewPolldates is called.

Scripting
All parameters should be in UTF-8 format in order for the plug-in to be able to treat the input data
in a correct way.

Following functions are exported from the administration interface

SetParam int SetParam(paramType, paramValue);

String paramType;
String paramValue;

Returns Integer Errorcode.

Function SetParam can be used to set parameters of the plug-
in.

GetParam string GetParam(paramType);

String paramType;

Returns String paramValue.

Administration Plug-in

46

If an empty string is returned, the command has failed.
The error code can be retrieved with a call to the function
GetLastError.

PerformAction int PerformAction(action);

String action;

Returns Integer Errorcode.

This function is called in order to initiate a specific
administration action.

The following actions are yet available:

Action Description

pinAdministration Administrate PIN of a token.
The operation is defined by
the parameter PinOperation. If
PinOperation is not set, both
change and unblock PIN is
allowed.

exportToken Export a token from Personal.
The token will be exported
in the format given in
the parameter ExportType. If
ExportType is not set, the
behaviour configured in the
Personal installation will be
used.

importToken Import a token to Personal.

deleteToken Delete a token from Personal.

getResponse Calculates the response from
a previous set challenge using
SetParam.

renewPollDates Requires that SSL is used.
Sets Auto Update parameters
from previous set data
using parameter bbdInfo in
SetParam. In the branding, it is
also possible to define which
servers are allowed to run the
plug-in.

GetLastError int GetLastError();

Returns Integer Errorcode.

Call this function in order to retrieve the last error code of the
plug-in. Useful when for example function

GetParam
returns NULL and one wants to know the reason of the error.

Reset int Reset();

Administration Plug-in

47

Returns Integer Errorcode.

When called, all plug-in parameters are reset.

Sample Web Pages
This section includes some basic sample pages, showing how to activate the plug-in.

Internet Explorer

<HTML>
 <SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.WebAdminCtl");
 if (xObj) {
 document.writeln("Object installed.");
 }
 } catch (e) {
 document.writeln("Object not installed.");
 }
 </SCRIPT>

 <OBJECT ID="webadmin"
 CLASSID="CLSID:524B98BC-7B94-48CB-8F6E-CEC7D1B64522">
 </OBJECT>

 <SCRIPT language="JavaScript">
 webadmin.SetParam('PinOperation','changepin');
 webadmin.SetParam('Issuers','cn=Our CA,c=SE;cn=Your CA,c=FI');
 var res = webadmin.PerformAction('pinAdministration');
 if (res == 0) {
 document.writeln('Operation successfully performed.');
 } else {
 document.writeln('Failed to perform action. Error = '+res);
 }
 </SCRIPT>
</HTML>

Mozilla-based browsers

<HTML>
 <SCRIPT language="JavaScript">
 if (navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personalwebadmin"]) {
 if (navigator.mimeTypes["application/x-personal-webadmin"].enabledPlugin) {
 document.writeln("Plugin installed.");
 }
 }
 }
 }
 </SCRIPT>

 <OBJECT id="webadminId"
 type="application/x-personal-webadmin"
 length=0
 height=0>

Administration Plug-in

48

 </OBJECT>

 <SCRIPT language="JavaScript">
 var webadmin = document.getElementById('webadminId');
 webadmin.SetParam('PinOperation','changepin');
 webadmin.SetParam('Issuers','cn=Our CA,c=SE;cn=Your CA,c=FI');
 var res = webadmin.PerformAction('pinAdministration');
 if (res == 0) {
 document.writeln('Operation successfully performed.');
 } else {
 document.writeln('Failed to perform action. Error = '+res);
 }
 </SCRIPT>
</HTML>

Error codes

Code Description

General Return Codes

0 OK

8001 General error

8002 Operation cancelled by user

8003 Memory error

8004 Invalid parameter

8005 Failed to decode request

8006 Failed to encode request

8007 Failed to convert to/from Unicode

8008 Operation not supported

8009 Token not present

8010 Failed to determine page URL

8011 Server not trusted

8012 Parameter is not Boolean

8013 Incorrect PIN

8022 Plug-in cannot communicate with Personal

PIN Administration Return Codes

8101 PIN policy error

8102 PIN is blocked

8103 PIN is not blocked

8104 Incorrect PUK

Export Return Codes

8201 Error writing exported token

Import Return Codes

8301 Failed to import token

Delete Return Codes

8401 Failed to delete token(s)

Renew Polldates Return Codes

8601 Auto-update Manager not present.

Administration Plug-in

49

Configuration
The branding DLL contains the hosts that are allowed to run this plug-in. If no host configuration
exists, all hosts are allowed to run this plug-in.

50

Chapter 7. LogoutTokens Plug-in
Introduction

The LogoutTokens plug-in allows the web server to log out a user from the token once the session
has been completed.

After the user has finished the session and logs out from the current web site, the web server invalidates
the session key by clearing it at the server side. The log out from the server prevents someone else
from creating a new session without entering the PIN again.

The plug-in must be scripted. This means that, after the plug-in has been activated, a script function
must be called in order to log out the user from the token.

Plug-in Activation
The following <OBJECT> tags are used to activate the plug-in in a web browser:

ClassID B2D171C8-6B69-487D-9267-806486775771 (Windows only)

ProgID Nexus.LogoutCtl (Windows only)

Activation MIME type application/x-personal-logout

Internet Explorer

Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX control. It is activated using the
<OBJECT> tag.

Example 7.1. Example of an ActiveX control activation

<OBJECT ID="LogoutTokens"
 CLASSID="CLSID:B2D171C8-6B69-487D-9267806486775771">
</OBJECT>

It is also possible for the web server to use a scripting language to silently detect if the plug-in is
installed in the client.

Example 7.2. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.LogoutCtl");
 if(xObj) {
 document.writeln("Object installed.");
 }
 } catch (e) {
 document.writeln("Object not installed.");
 }
</SCRIPT>

LogoutTokens Plug-in

51

There are no issues with Eolas' patent since the plug-in does not use any parameters.

Mozilla-Based Browsers
In Mozilla-based browsers, the plug-in is implemented using the NPAPI. It can be activated using the
<OBJECT> tag. It should be noted that this is done in a different way than for Internet Explorer. The
ClassID is not used to identify the plug-in, but rather the activation MIME type as defined above.

Example 7.3. Example of how to activate the Mozilla-based browsers plug-in
using the <OBJECT> tag

<OBJECT ID="Logout" TYPE="application/x-personal-logout">
</OBJECT>

A script language can be used by the web server to decide whether the plug-in is installed in the
browser by checking if the activation MIME type is registered.

Example 7.4. Example of a script to activate the plug-in:

<SCRIPT language="JavaScript">
 if(navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personallogout"]) {
 if (navigator
 .mimeTypes["application/x-personal-logout"].enabledPlugin)
 {
 document.writeln("Plugin installed");
 }
 }
 }
 }
</SCRIPT>

Parameters
The plug-in does not take any parameters.

Scripting
The following functions are implemented

LogoutTokens int LogoutTokens();

Logs out the user from all logged in tokens.

Always returns 0 (i.e. successful).

Usage
The web server should call this plug-in right before it invalidates the SSL session key. Then it will not
be possible to create a new session key, without the user having to enter the PIN again.

LogoutTokens Plug-in

52

The plug-in knows in which process it is running. That is the same browser process that has loaded the
CSP (Windows only) or PKCS#11 library and logged in to a token during the SSL client authentication.

The plug-in then can send this information to the Personal application, which can send an event telling
the appropriate process to log out of its tokens.

However, it cannot tell exactly which token to logout, so all logged in tokens in that process have
to log out. This will not be a problem in most cases, since the browser usually can only handle one
SSL session, and the plug-ins will not be constantly logged in. Thus, no other token should be logged
in, to that process.

Sample Web Pages
This section includes some basic sample pages, showing how to activate the plug-in. For more
extensive samples, see the sample pages package.

Example 7.5. Example of how to Detect and Activate the Plug-in in Internet
Explorer (Windows only)

<HTML>
 <SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.LogoutCtl");
 if(xObj) {
 document.writeln("Object installed.");
 }
 document.writeln("Object not installed.");
 }
 </SCRIPT>

 <OBJECT ID="LogoutTokens"
 CLASSID="CLSID:B2D171C8-6B69-487D-9267806486775771">
 </OBJECT>
 <SCRIPT language="JavaScript">
 LogoutTokens.LogoutTokens();
 </SCRIPT>
</HTML>

LogoutTokens Plug-in

53

Example 7.6. Example of how to Detect and Activate the Plug-in in Mozilla-
based broswers

<HTML>
 <SCRIPT language="JavaScript">
 if(navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personallogout"]) {
 if (navigator
 .mimeTypes["application/x-personal-logout"].enabledPlugin) {
 document.writeln("Plugin installed");
 }
 }
 }
 }
 </SCRIPT>

 <OBJECT id="logoutId" type="application/x-personal-logout">
 </OBJECT>

 <SCRIPT language="JavaScript">
 var logout = document.getElementById('logoutId');
 logout.LogoutTokens();
 </SCRIPT>
</HTML>

Security Issues
The plug-in might open up for denial-of-service attacks, allowing malicious web content to log out
the user from the currently logged in tokens. However, this requires the user to view the malicious
content in the same process as the one currently logged into using client authenticated SSL. Even if
this would happen, the effect is quite harmless.

54

Chapter 8. Version Plug-in

Introduction
This plug-in is used to retrieve the version of Personal and its installed components.

Plug-in Activation
The following <OBJECT> tags are used to activate the plug-in in a web browser:

ClassID E5C324CC-4029-43CA-8D57-4A10480B9016 (Windows
only)

ProgID Nexus.VersionCtl (Windows only)

Activation MIME type application/x-personal-version

Internet Explorer

Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX control. It can be activated using the
<OBJECT> tag.

Example 8.1. Example of an ActiveX control activation

<OBJECT ID="PersonalVersion"
 CLASSID="CLSID:E5C324CC-4029-43CA-8D574A10480B9016">
</OBJECT>

It is also possible for the web server to use scripting to silently detect if the plug-in is installed in
the client.

Example 8.2. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.VersionCtl");
 if(xObj) {
 document.writeln("Object installed.");
 }
 } catch (e) {
 document.writeln("Object not installed.");
 }
</SCRIPT>

If a scripting language is used, we recommend that solution 1 be used. Please refer to “ Appendix A
— Eolas Patent” for more information.

Version Plug-in

55

Mozilla-Based Browsers

In Mozilla-based browsers, the plug-in is implemented using the NPAPI. It can be activated using the
<OBJECT> tag. It should be noted that this is done in a different way than for Internet Explorer. The
ClassID is not used to identify the plug-in, but rather the activation MIME type as defined above.

Example 8.3. Example of how to activate the Mozilla-based browsers plug-in
using the <OBJECT> tag

<OBJECT ID="Version" TYPE="application/x-personal-version">
</OBJECT>

A script language can be used by the web server to decide whether the plug-in is installed in the
browser by checking if the activation MIME type is registered.

Example 8.4. Example of a script to activate the plug-in

<SCRIPT language="JavaScript">
 if(navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personalversion"]) {
 if (navigator.mimeTypes["application/x-personal-version"].enabledPlugin)
 {
 document.writeln("Plugin installed");
 }
 }
 }
 }
</SCRIPT>

Parameters

Parameter Explanation

PostUrl Sets the URL to which the plug-in should post its
data. If this parameter is not set, no data will be
posted. An absolute URL is required.

Scripting

The following functions are implemented

PostVersion void PostVersion(postUrl);

String postUrl;

If the plug-in is activated without setting the PostUrl
parameter in a <PARAM> tag, the plug-in will not post any data.
The PostVersion method can be used to post the version at
a later stage.

Version Plug-in

56

GetVersion string GetVersion();

Returns String

Returns the version string without posting it. The format of the
string is described below.

Sample Web Pages
This section includes some basic sample pages, showing how to activate the plug-in. For more
extensive samples, see the sample pages package.

Example 8.5. Example of Direct Activation using Internet Explorer (Windows
only):

<HTML>
 <OBJECT ID="PersonalVersion"
 CLASSID="CLSID:E5C324CC-4029-43CA-8D574A10480B9016">
 <PARAM NAME='PostURL' VALUE='http://server.com/post'>
 </OBJECT>
</HTML>

Example 8.6. Example of Scripting using Internet Explorer (Windows only)

<HTML>
 <SCRIPT language="JavaScript">
 try {
 var xObj = new ActiveXObject("Nexus.VersionCtl");
 if(xObj) {
 document.writeln("Object installed.");
 }
 } catch (e) {
 document.writeln("Object not installed.");
 }
 </SCRIPT>
 <OBJECT ID="version"
 CLASSID="CLSID:E5C324CC-4029-43CA-8D57-4A10480B9016">
 </OBJECT>
 <SCRIPT language="JavaScript">
 document.writeln(version.GetVersion());
 </SCRIPT>
</HTML>

Example 8.7. Examples of Direct Activation using Mozilla-based browsers

<HTML>
 <OBJECT ID="PersonalVersion" type="application/x-personal-version">
 <PARAM NAME='PostURL' VALUE='http://server.com/post'>
 </OBJECT>
</HTML>

Version Plug-in

57

Example 8.8. Example of Scripting using Mozilla-based browsers

<HTML>
 <SCRIPT language="JavaScript">
 if(navigator.plugins) {
 if (navigator.plugins.length > 0) {
 if (navigator.mimeTypes &&
 navigator.mimeTypes["application/x-personalversion"]) {
 if (navigator.mimeTypes["application/x-personal-version"].enabledPlugin) {
 document.writeln("Plugin installed");
 }
 }
 }
 }
 </SCRIPT>
 <OBJECT ID="versionId"
 TYPE="application/x-personal-version"
 LENGTH=0
 HEIGHT=0>
 </OBJECT>
 <SCRIPT language="JavaScript">
 var version = document.getElementById('versionId');
 document.writeln(version.GetVersion());
 </SCRIPT>
</HTML>

Output format
The version plug-in will enumerate all installed components and either send them as a web form, i.e.
Content-Type: application/x-www-formurlencoded, using HTTP Post or make them
available for the GetVersion() method.

The body of the post, or the return value of the GetVersion() method may contain the following items.

1. Version of Personal in the format (mandatory)

Personal=<version nr>

2. Version of each installed component in the format

<file name>_<extension>=<version
 nr>

Multiple modules are separated by "&"

3. The string CSP_INSTALLED={TRUE, FALSE}, specifying if the CSP is installed or not.
(Windows only)

4. Smart Card readers available for Personal in the format:

SmartCard_Reader=<reader name>

If multiple readers are installed, several of these entries are returned. The fields are not to be treated
as case sensitive.

5. Platform

Platform is either win32, win64, macosx or linux.

6. OS version

For platform win32 os_version={win95, win98, winme, winnt,
win2000, win2003, winxp, winvista, win7,
unknown}

Version Plug-in

58

For platform macosx os_version=<majorversion>.<minorversion>

I.e. 10.4, 10.5 etc. or unknown.

For platform linux os_version=8.04

Specifying the Ubuntu distribution version.

7. Distributiondistribution=ubuntu

Specifying the os distribution. (Linux Only)

8. Time when Personal at the latest should do an update check
best_before=<value of best-before-date>

9. File signing capability of Personal.
docSign=1

docSign=1 is the only allowed value if filesigning is supported.

10.Unique hardware identification string.
uhi=<base64 encoded string>

Example 8.9. Example of a version string

Personal_exe=4.10.0.33&persinst_exe=4.10.0.33&Ctest_ng_exe=1.0.0.1&tokenapi_d
ll=4.10.0.29&personal_dll=4.10.0.29&np_prsnl_dll=4.10.0.33&lng_svse_dll=4.10.
0.33&crdsiem_dll=4.10.0.33&crdsetec_dll=4.10.0.33&crdprism_dll=4.10.0.33&br_s
vse_dll=1.4.0.9&br_enu_dll=1.4.0.9&branding_dll=1.4.0.9&CSP_INSTALLED=TRUE&Pe
rsonal=4.10.0.33&platform=win32&os_version=winxp&best_before=1224740253&docSi
gn=1&uhi=qFFzPs1w111e0YuJf08h+yOerhg=&

59

Chapter 9. Personal PKCS#11

Introduction
This chapter contains information about the PKCS#11 module in Personal.

The interface to Personal PKCS#11 is compatible with Cryptoki (PKCS #11 version v2.20) and
implements a subset of the API as defined in reference [6].

This module is installed in the Mozilla-based browsers in order to enable SSL authentication.

Mozilla Browsers
The Personal PKCS#11 module is automatically registered as a cryptographic module for all found
Mozilla user profiles.

PKCS #11 API
This chapter describes the API functions implemented in the Personal PKCS#11 module. Only the
functions that have been implemented have been detailed below.

General Purpose

Function Description

C_Initialize Initializes Cryptoki.

C_Finalize Cleans up miscellaneous Cryptoki functions.

C_GetInfo Obtains general information about Cryptoki.

C_GetFunctionList Obtains entry points of Cryptoki library functions.

Slot and Token Management

Function Description

C_GetSlotList Obtains a list of slots in the system.

C_GetSlotInfo Obtains information about a particular slot.

C_GetTokenInfo Obtains information about a particular token.

C_GetMechanismList Obtains a list of mechanisms supported by a
token.

C_GetMechanismInfo Obtains information about a particular
mechanism.

C_SetPIN Modifies the PIN of the user that is currently
logged in.

C_WaitForSlotEvent Waits for slot event (token insertion, removal etc.)
to occur.

C_UnblockPIN This function is not member of the PKCS #11
v2.20 specification. It can be used to unblock a
PIN.

Personal PKCS#11

60

Session Management

Function Description

C_OpenSession Opens a connection or “session” between an
application and a particular token.

C_CloseSession Closes a session.

C_CloseAllSessions Closes all sessions with a token.

C_GetSessionInfo Obtains information about the session.

C_Login Logs into a token. Only CKU_USER is supported
for soft tokens.

C_Logout Logs out from a token.

Object Management

Function Description

C_CreateObject Creates a new object.

C_CopyObject Copies an object, creating a new object for the
copy.

C_DestroyObject Destroys an object.

C_GetAttributeValue Obtains an attribute value of an object.

C_SetAttributeValue Modifies the value of one or more attributes of an
object.

C_FindObjectsInit Initializes an object search operation.

C_FindObjects Continues an object search operation.

C_FindObjectsFinal Finishes an object search operation.

Encryption and Decryption

Function Description

C_EncryptInit Initializes an encryption operation.

C_Encrypt Encrypts single-part data.

C_EncryptUpdate Continues a multiple-part encryption operation.

C_EncryptFinal Finishes a multiple-part encryption operation.

C_DecryptInit Initializes a decryption operation.

C_Decrypt Decrypts single-part encrypted data.

C_DecryptUpdate Continues a multiple-part decryption operation.

C_DecryptFinal Finishes a multiple-part decryption operation.

Message Digesting

Function Description

C_DigestInit Initializes a message — digesting operation.

C_Digest Digests data in a single part.

C_DigestUpdate Continues a multiple-part digesting operation.

C_DigestFinal Finishes a multiple-part digesting operation.

Personal PKCS#11

61

Signing and Verifying

Function Description

C_SignInit Initializes a signature operation.

C_Sign Signs single part data.

C_SignUpdate Continues a multiple-part signing operation.

C_SignFinal Finishes a multiple-part signing operation.

C_SignRecoverInit Initializes a signature operation, where the data
can be recovered from the signature.

C_SignRecover Signs single-part data, where the data can be
recovered from the signature.

C_VerifyInit Initializes a verification operation.

C_Verify Verifies a signature on single-part data.

C_VerifyRecoverInit Initializes a verification operation where the data
is recovered from the signature.

C_VerifyRecover Verifies single-part data, where the data can be
recovered from the signature.

Key Management

Function Description

C_GenerateKeyPair Generates a public/private key pair, creating new
key objects.

C_WrapKey Wraps (i.e. encrypts) a key.

C_UnwrapKey Unwraps (i.e. decrypts) a wrapped key, creating a
new private key or secret key object.

Random Number Generation

Function Description

C_SeedRandom Mixes additional seed material into the token’s
random number generator.

C_GenerateRandom Generates random or pseudo- random data.

Interoperability
The PKCS #11 v2.20 specification is the complete documentation of the API implemented by Personal
PKCS#11. This section only describes exceptions from PKCS #11 specification.

C_GetSlotList() Each physical smart card token will, by default, be shown as
two virtual tokens to allow multiple PIN codes on a smart card.
If only one PIN is available, then the second slot will be empty.

C_Login() Only CKU_USER is supported for software tokens.

C_FindObjectsInit() A return value is added: CKR_TEMPLATE_INCONSISTENT

C_DecryptUpdate() A return value is added:
CKR_FUNCTION_NOT_PERMITTED

Personal PKCS#11

62

C_EncryptUpdate() A return value is added:
CKR_FUNCTION_NOT_PERMITTED

C_UnblockPIN() This function is not member of the PKCS #11 v2.20
specification. It can be used to unblock a locked PIN.

CK_RV C_UnblockPIN(CK_SESSION_HANDLE hSession,
 CK_CHAR_PTR pPin,
 CK_ULONG ulPinLen,
 CK_CHAR_PTR pPuk,
 CK_ULONG ulPukLen) ;

hSession is an ordinary session handle.

pPin should point to a buffer containing the PIN. It depends
on the token whether this should be the old PIN or a new PIN.

pPuk is a pointer to the unblocking code.

PKCS#11 Configuration
It is possible to configure the PKCS#11 to customer specific needs. See “ Appendix D — CSP and
PKCS#11 Configuring”.

63

Chapter 10. Personal CSP
Introduction

Note

This chapter applies to the Windows platform only.

This chapter contains information about the CSP module in Personal.

The CSP component of Personal implements a Microsoft CSP (Cryptographic Service Provider).

Any application using MSCAPI can automatically access the smart card and smart card reader support
of Personal. Some examples of applications using this API are WinLogon, Microsoft Office 2003
(and later), Internet Explorer, and various VPN clients. The Microsoft ActiveX control XEnroll is also
using this API.

CSP Information
Personal CSP has the following characteristics:

Provider type PROV_RSA_FULL

Provider name Personal CSP

CSP Functions
This chapter describes the functions implemented in Personal CSP.

A detailed description of the various Microsoft CryptoAPI functions can be found at the MSDN
Library, see reference [6].

Section “Interoperability ” specifies any deviations in the Personal CSP implementation.

CSP Connection
Function Description

CPAcquireContext Acquires a handle to a key container in a particular
CSP.

CPGetProvParam Retrieves attributes from Personal CSP.

CPReleaseContext Releases the handle acquired by the
CryptAcquireContext function.

CPSetProvParam Specifies attributes of a CSP.

Key Management
Function Description

CPDestroyKey Destroys or releases a handle to a key.

CPExportKey Transfers a key from the CSP to a key BLOB in
the application's memory space.

CPGenKey Generates a random key.

CPGetUserKey Gets a handle to the key exchange or signature
key.

Personal CSP

64

Function Description

CPGenRandom Generates random data.

CPGetKeyParam Retrieves the parameters of a key.

CPImportKey Transfers a key from a key BLOB to a CSP.

CPSetKeyParam Specifies the parameters of a key.

Hashing and Digital Signatures
Function Description

CPCreateHash Creates an empty hash object.

CPGetHashParam Retrieves a hash object parameter.

CPHashData Hashes a block of data and adds it to the specified
hash object.

CPSetHashParam Sets a hash object parameter.

CPSignHash Signs the specified hash object.

Encryption
Function Description

CPDecrypt Decrypts a section of plaintext by using the
specified encryption key.

Interoperability
CPAcquireContext() The flags CRYPT_VERIFYCONTEXT, CRYPT_SILENT,

CRYPT_DELETEKEYSET, and CRYPT_NEWKEYSET are
supported. The flag CRYPT_MACHINE_KEYSET is ignored.

If this method is called with container parameter = NULL, the
default key container will be used. The default key container
in the configuration file will be used if specified, otherwise,
CSP will try to create a context according to the following
principles:

1. Use the first card reader having a smart card inserted.

2. Use the first card reader without a card.

3. A context will be created like if CPAcquireContext is
called with the flag CRYPT_VERIFYCONTEXT.

Personal supports the following types of container names:

• Card reader containers using the Microsofts format: \\.
\<reader_name>\.

Example: \\.\Gemplus USB Smart Card Reader
0\.

• A container representing a certificate. The container name is
then the SHA-1 hash of the certificate.

Example:
90C75B312BEE4F8117EA90EDC7F8F395314ECFEA

Personal CSP

65

• Other supported container names, described in “Container
Name ”, are

• GUID (Globally Unique IDentifier)

• \\.\<reader>\<id> and \\.\<reader>
\0x<id>

CPGetProvParam() The query PP_KEYSET_SEC_DESCR is not supported.

If a CSP function returns NTE_FAIL, it is possible to call
CryptGetProvParam with dwParam=PP_NX_LAST_ERROR
in order to get a more detailed explanation of the error situation.

PP_NX_LAST_ERROR 0x80000001

The following error codes are defined:

ERROR_NX_UNDEFINED 0x80007000

ERROR_NX_PIN_INCORRECT0x80007001

ERROR_NX_PIN_BLOCKED 0x80007002

For each call to a CSP API function, the error code is reset to
ERROR_NX_UNDEFINED.

Note

The error codes are set per thread. If several threads
are running, it is only the one that got NTE_FAIL in
return from CSP that can call CryptGetProvParam to
get PP_NX_LAST_ERROR.

Parameter PP_NX_CONTEXT_FLAGS can be used to get
more information about the token.

NX_FLAG_HW_TOKEN0x00000001 <text>Smart card
token</text>

NX_FLAG_HAS_PROTECTED_AUTH_PATH0x00000002 <text>PIN-Pad
reader</text>

NX_FLAG_TOKEN_REMOVABLE0x00000004 <text>Token on
removable media</
text>

NX_FLAG_TOKEN_PRESENT0x00000008 <text>Token is
available</text>

CPSetProvParam() Parameter PP_KEYSET_SEC_DESCR is not
supported. Additional supported parameters
are: PP_KEYEXCHANGE_PIN (value 32) and
PP_SIGNATURE_PIN (value 33).

pbData should point to a string containing the PIN.

CPExportKey() OPAQUEKEYBLOB and PRIVATEKEYBLOB are not
supported.

CPGenKey() If algorithm identifier AT_KEYEXCHANGE or
AT_SIGNATURE is used, the flag

Personal CSP

66

CRYPT_USER_PROTECTED has to be set. The flag
CRYPT_EXPORTABLE must not be set. Supported key lengths
are 512, 768, 1024, and 2048 bits.

CPGetKeyParam() Additional parameter value supported is KP_CERTIFICATE
(value 26), which, if successful, will return a certificate
associated with the key.

CPImportKey() Supported key BLOB types are PUBLICKEYBLOB,
SIMPLEBLOB and PRIVATEKEYBLOB.

CPSetKeyParam() Additional parameter value supported is KP_CERTIFICATE
(value 26).

When using this parameter, a certificate is stored on the token
having the key associated with this certificate.

CPCreateHash() Supported mechanisms are CALG_SSL3_SHAMD5,
CALG_MD5 and CALG_SHA1.

CPHashData() CRYPT_USERDATA is not supported.

CPSetHashParam() Supported parameter is HP_HASHVAL.

CPSignHash() The flag CRYPT_NOHASHOID is supported for all tokens
that support RSA with PKCS#1 padding. All soft tokens
support this, and the requirement for cards is that no hash OID
is added to the data that is signed.

Additional Comments
The Personal application (personal.exe) moves the certificates from the smart card or the software
token to MS Cert Store, where they can be accessed by e.g. Internet Explorer.

Using XEnroll with Personal CSP
XEnroll, which is an ActiveX component from Microsoft, can be used with Personal CSP for certificate
enrollment. ICEnroll is a set of interfaces used with XEnroll.

The XEnroll interface has a property, UseExistingKeySet, which should be set to TRUE if secondary
certificates are to be issued. If the property is set to FALSE, new keys should always be generated.

In XEnroll, the container name is set by the property ContainerName.

Container Name
Container name can be specified in various ways:

1. Blank container name

2. Card reader name

3. Card reader name and ID

4. One, by Personal unknown, container name

Blank container name

If a blank container name is set, the default container will be selected. The default container is the
first card reader (with an inserted smart card) detected by the CSP. If no card is inserted, the first card

Personal CSP

67

reader detected will be selected. XEnroll will call the CSP with an autogenerated container name in
GUID format, e.g., 857b6eeb-5f4c-4edb-b87e-07b883c205d3.

If a key is to be generated when the request is created, it is only possible to generate one key of each
sort, i.e. one AT_KEYEXCHANGE and one AT_SIGNATURE. The reason is that the key ID is based
on the container name and has to be unique for a key pair on the token.

Card reader name

A card reader name should have the format
\\.\<reader name>\

Example:
\\.\Gemplus USB Smart Card Reader 0\

If a key is to be generated when the request is created, it is only possible to generate one key of each
sort, i.e. one AT_KEYEXCHANGE and one AT_SIGNATURE. The reason is that the key ID is based
on the container name and has to be unique for a key pair on the token.

Card reader name and ID

Use one of the following formats:
\\.\<reader name>\<id>

or
\\.\<reader name>\0x<id>

Example 1:

\\.\Gemplus USB SmartCard Reader 0\1

In this case ID will be 0x31.

Example 2:

\\.\Gemplus USB SmartCard Reader 0\0x55

In this case ID will be 0x55.

When this format is used, it is possible to control for which key a certificate should be issued. If option
key generation is selected, the key ID will be the ID of the container name. If an existing key is used,
its ID should be known.

If this format is used, and a card reader, unknown to Personal, is specified, the defualt container will
be used and a key pair with the given ID will be searched for or created.

Unknown container name

Create new key set
(UseExistingKeySet=0)

If the CSP does not find a key/token with the specified
container name, the default container will be selected.
Unknown container name means that the format does not
comply with the possible ones (see “ CPAcquireContext”)

Use existing key set
(UseExistingKeySet=1)

If the key/token is not found, the CSP will return an error code.

Example
This example contains an HTML page using XEnroll. An authentication key is generated and a
certificate is requested for that key.

Personal CSP

68

<HTML>
 <OBJECT NAME="XEnrollObject"
 CLASSID="CLSID:127698e4-e730-4e5c-a2b1-21490a70c8a1">
 </OBJECT>

 <SCRIPT Language="Javascript">
 function doRequest() {
 var enrollment = document.XEnrollObject;
 enrollment.ProviderType= '1'
 enrollment.ProviderName= 'Personal CSP'
 enrollment.UseExistingKeySet= '0'
 enrollment.GenKeyFlags= '2'
 enrollment.ContainerName= '\\\\.\\Gemplus GemPC430 0\\0x22'
 enrollment.HashAlgorithm= 'SHA1'
 enrollment.KeySpec= '1'
 document.Order.pkcs10.value = enrollment.CreatePKCS10("CN=cm", "")
 document.Order.submit();
 }
 </SCRIPT>
 <FORM NAME="Order"
 ACTION="/servlet/XEnroll"
 ENCTYPE=x-www-form-encoded
 METHOD="POST">
 <INPUT TYPE="hidden"
 NAME="pkcs10"
 VALUE="">
 <INPUT TYPE="hidden"
 NAME="Process"
 VALUE="order">
 <INPUT TYPE="hidden"
 NAME="Response"
 VALUE="order/exp">
 <TABLE BORDER=1 CELLPADDING=6 BGCOLOR="#CCCCCC" >
 <TR>
 <TD>
 First Name
 </TD>
 <TD>
 <INPUT NAME="firstname"
 TYPE="text"
 SIZE="30">
 </TD>
 </TR>
 <TR>
 <TD>
 Last Name
 </TD>
 <TD>
 <INPUT NAME="lastname"
 TYPE="text"
 SIZE="30">
 </TD>
 </TR>
 </TABLE>

 <INPUT TYPE="button"
 NAME="SubmitApp"
 VALUE="Submit Application"
 onClick="doRequest()">
 </FORM>
</HTML>

CSP Configuration
It is possible to configure the CSP to customer specific needs. See “ Appendix D — CSP and PKCS#11
Configuring”.

69

Chapter 11. Installation on Windows

Program Requirements
The overall goals for the packaging and distribution of Personal are as follows:

• Installation should be a "one-click" procedure.

• Keep it small and adapted to large web-based installations.

• Support for pushing out installations/upgrades to users within an organization.

In order to reach these goals, a dedicated installation program performs the various aspects of
the installation. Furthermore, the installation is packaged into browser specific packages for easy
installation from web-based environments. The installation also manages PKCS#11, CSP, ActiveX,
and plug-in installation.

The Installation Program
The installation program is a standard Windows executable. All the files to be installed are packaged
into the executable persinst.exe.

Packaging

The installation program persinst.exe is packaged for four different distributions.

• A signed CAB file for installation in Internet Explorer.

• An XPI file for installation in Mozilla-based web browsers.

• An EXE file created using the IExpress packager for traditional distribution. The EXE file is signed
and compressed.

• A copy of persinst.exe, which can be used when building customer specific packets based
on Personal.

Installation Conditions

Installation and uninstallation of Personal is performed by the program persinst.exe. The
behavior of the program is controlled by parameters in the optional file persinst.cfg, which
must be stored in the same directory. A default installation will take place if no persinst.cfg is
available. In addition, if a file named personal.cfg exists in the same directory, it will also replace
the shipped personal.cfg located in PersonalInstall (see below) during the installation.

persinst.cfg enables an organisation to customize the installation process to suit special needs.

personal.cfg enables an organisation to provide settings that will make Personal behave in a
predetermined way.

Note

The delivered file personal.cfg is a sample configuration file containing all parameters
not described elsewhere. See the well commented file, for detailed information.

Installation on Windows

70

By default, “master copies” of the program and configuration files are stored in PersonalInstall
\bin, a location defined by the registry key HKEY_LOCAL_MACHINE\Software\Personal
\<version>\PersonalInstall . (Normally C:\Program Files\Personal).

When a user starts Personal, a private configuration file is stored in PersonalHome\config, a location
defined by the registry key HKEY_CURRENT_USER\Software\Personal\<version>
\PersonalHome . (Normally C:\Documents and Settings\<user_name>\Application Data
\Personal.)

Each time a user starts Personal, a check is made against InstallUid in the registry to see if the master
copy has been updated. If so, the user’s private copy of the configuration file personal.cfg will
be merged with any new settings from the master copy.

An example of personal.cfg is shipped with the product. Use this file to find out what parameters
can be set.

Installation Configuration
All parameters in persinst.cfg are well commented and therefore not described in detail in this
document. The following options exist:

• To display a message or open a URL after a successful installation.

• To use the Event log for logging.

• To perform a silent or non-silent installation.

• To specify the questions and answers to be asked by the installation program.

• To display reference number in error messages.

• To specify if Personal should be added to Add/Remove programs in the Control Panel.

• To add additional files to the installation package.

Installation Options
An installation can be silent, i.e., no user action is required. The installation program can perform the
following actions:

• Install - install current version of Personal.

• Reinstall - install current version of Personal without uninstalling any existing version.

• Upgrade - uninstall older version of Personal and install current version.

• Modular upgrade - is only able to upgrade the same version. It can be used to install selective files.
As an example, this option, which requires a special build of persinst.exe, could be useful
when distributing components related to a specific language within an organization, configuration
updates, or extended smart card support.

• Uninstall - uninstall Personal either using the Add/Remove program function in the
Control Panel or the command persinst.exe -u in the location defined by the registry
key HKEY_LOCAL_MACHINE\Software\Personal\<version>\PersonalInstall
\bin

Messages from the Installation Program
Personal installs shortcuts in the Programs menu. The following shortcuts are installed:

Installation on Windows

71

• Personal

• Personal Guide

Personal also installs a shortcut to the executable under the startup menu so that Personal will start
when logging into the machine.

Shortcuts

Personal installs shortcuts in the Programs menu. The following shortcuts are installed:

• Personal

• Personal Guide

Personal also installs a shortcut to the executable under the startup menu so that Personal will start
when logging into the machine.

Installation Directory Tree

At the time of the installation, the bin, config, and doc directories are created under the
PersonalInstall key.

The config and store directories are created under the PersonalHome key, when Personal is started the
first time. In addition, a directory cache is created when Personal is using a smart card token.

bin The bin directory contains all executables and shared libraries
used by Personal. It also contains the signature files for the
signed files.

config The config directory contains the client configuration file
personal.cfg.

doc The doc directory contains the end user help files for all
supported languages.

store The store directory contains the internal software token store.

Web Installation Flowchart
When distributing and installing Personal from a web environment, the following flowchart should be
used in order to check if there is a Personal installed and which version resides on the machine.

Installation on Windows

72

Figure 11.1. Web Installation Flowchart

1. Check if the version plug-in is present. This is a browser specific operation which is illustrated in
the sample JavaScript below. Note that the <OBJECT> tag is used without the code base so that the
plug-in is not downloaded if it is not found.

Installation on Windows

73

Example 11.1.

function testForBrowser() {
 var pattern = /netscape/i;
 if (pattern.test(navigator.appName)) {
 browserIsNetscape = true;
 }
 pattern = /microsoft/i;
 if(pattern.test(navigator.appName)) {
 browserIsIE = true;
 }
 }
 function testForVersionPlugin() {
 if (browserIsIE) {
 try {
 versionPluginObject = new ActiveXObject("Nexus.VersionCtl");
 versionPluginInstalled = (null != versionPluginObject);
 } catch(e) {
 versionPluginObject = null;
 }
 }
 if (browserIsNetscape) {
 if (navigator.mimeTypes["application/x-personal-version"] != null &&
 navigator.mimeTypes["application/x-personal-version"].enabledPlugin != null) {
 versionPluginObject = null;
 versionPluginInstalled = navigator.mimeTypes["application/x-personal-version"].enabledPlugin;
 }
 }
 }
 testForBrowser();
 if (browserIsNetscape) {
 document.write('<OBJECT id="versionId" type="application/x-personal-version"></OBJECT>');
 } else if (browserIsIE) {
 document.write('<OBJECT id="versionId" CLSID="E5C324CC-4029-43CA-8D57-4A10480B9016"></OBJECT>');
 }
 testForVersionPlugin()

1.1 Sends the tags that trigger the download of the Personal installation. Again this is browser
specific, and is illustrated with some sample JavaScripts below. In this step, we use browser specific
instantiation of the plug-in object which downloads and installs the CAB or XPI files respectively.

Example 11.2.

function installPlugin() {
 var result = false;
 if (browserIsNetscape) {
 xpi={'Personal Signature and Authentication Client':'persinst.xpi'};
 InstallTrigger.install(xpi);
 Install.refreshPlugins();
 result = true;
 }
 if (browserIsIE) {
 document.write('<object classid="CLSID:659D6946-87C7-49a8-BC8A-7579CC223C2A" CODEBASE=persinst.cab>\n');
 document.write('</object>\n');
 result = true;
 }
 return result;
 }

Note
The classid above is not that of an existing product, and therefore, it will force an installation
of the CAB file.

Installation on Windows

74

1.2 Personal will be installed locally. This is handled entirely by the installation program persinst.exe.
The user can be sent back to step 1.

2. Retrieves the version from the version plug-in. (Refer to “Version Plug-in” on page 81 for more
information.) If the Personal version is older than the version on the web page, go to step 1.1 to update
to the new version.

3. Personal is installed and the version is sufficient which means that we can proceed and use the
Personal plug-ins to enroll and make digital signatures etc.

Limitations
Due to limitations in some browsers, (see release.txt for more information), it is necessary to take
precautions when designing the web pages. First it is necessary to check the UserAgent string to see
if the current browser has such a limitation. This is done by calling a special page. The following
example of a JavaScript shows a simple test:

Example 11.3.

<script language="Javascript">
 if (! versionPluginInstalled())
 {
 if (!installPlugin())
 {
 failXpiInstallPatternFF=/Firefox./i;
 failXpiInstallPatternNS=/Netscape.7.2/i;
 if (failXpiInstallPatternFF.test(navigator.userAgent) || failXpiInstallPatternNS.test navigator.userAgent))
 {
 window.location="index_ns.html";
 }
 else
 {
 window.location='install_cancel.html';
 }
 }
 }
 </script>

The page to be called could look like the following:

Example 11.4.

<html>
 <head>
 <meta http-equiv=Content-Type content="text/html; charset=iso-8859-1">
 <META HTTP-EQUIV="Pragma" CONTENT="no-cache"></META>
 <title>Personal NG test site</title>
 </head>
 Installation for Netscape 7.2 and Firefox 1.* users
 </body>
</html>

CSP & PKCS#11
The installation always copies and registers the file personal.dll which contains the PKCS#11 and CSP
APIs into the PersonalHome/bin directory. If the user has a Mozilla-based web browser installed, the
DLL is installed in the browser as a PKCS#11 module.

Installation on Windows

75

Plug-ins and ActiveX Controls
The installation always copies the file np_prsnl.dll to the PersonalInstall\bin directory. The
np_prsnl.dll file contains all plug-ins and ActiveX objects.

Both plug-ins and ActiveX objects are registered directly to the file under the PersonalInstall\bin
directory.

Upgrade and Migration
It is possible to upgrade from older versions of Personal to the current version.

Note

The installation program will not uninstall iD2 or SmartTrust versions of Personal but it is
possible to migrate soft tokens from those versions to Personal.

Uninstall
Personal is uninstalled through the Add/Remove programs buttons or optionally by
executing the UninstallString defined by the registry key HKEY_LOCAL_MACHINE
\Software\Microsoft\Windows\CurrentVersion\Uninstall\Personal. If files
are locked during uninstallation, the installation program will install itself into
the location specified by HKEY_CURRENT_USER\Software\Microsoft\Windows
\CurrentVersion\RunOnce and remove the locked files at next reboot.

Controlling the Behavior of Winlogon
In Windows XP, the Windows system process winlogon.exe is, by default, configured to read
certificates stored on an inserted smart card and put them in the Microsoft Certificate Store.

Personal does the same kind of storing. There is a race condition between winlogon.exe and the
Personal application, both storing the same certificates in the Certificate Store. If winlogon.exe writes
the certificates after Personal, some certificate attributes (created by Personal) will be overwritten and
Personal will not be able to act properly in some application-specific situations.

However, by changing some Microsoft specific registry settings, it is possible to control the behavior
of winlogon.exe.

Therefore, the Personal installation program configures winlogon.exe not to write certificates to the
Certificate Store. It also stores a backup of the original configuration in the Personal specific registry,
so it can restore the original winlogon.exe configuration if Personal is uninstalled.

The Personal installation program uses this possibility when installing and uninstalling Personal in
order to get rid of the described problem.

In Windows Vista, Windows 7 and Windows Server 2008, the Windows function which transfer
certificates from a smart card to Microsoft Certificate Store is implemented through domain policies
instead. In these environments, the Personal installation program does not take any action to prohibit
the Windows behavior and thus the resulting contents of Microdoft Certificate Store it is indeterminate
with respect to the certificates on the smart card at hand.

Event Log and Return Codes
Event ID/RC Text

2000 %1 %2 successfully installed.

Installation on Windows

76

Event ID/RC Text

2001 Operating system version, not supported by
installation program.

2002 Installation program requires administrator
privileges.

2003 Uninstallation program requires administrator
privileges.

2004 A newer version of %1 exists.

2005 Upgrade of %1 declined.

2006 Reinstall of %1 declined.

2007 Upgrade started.

2008 Upgrade failed.

2009 Uninstallation started.

2010 Current installation of %1 cannot be upgraded
to current version (%2). Uninstall it and run this
installation program again.

2011 Uninstallation started, no installation to uninstall.

2012 Installation started with unknown arguments.

2013 Installation of %1 is already running.

2014 Failure communicating with operating system.

2015 Out of memory.

2016 Failed to create installation directory.

2017 Failed using temporary directory for installation.

2018 Modular upgrade installation does not support
switch given to modular upgrade program.

2019 Modular upgrade successfully performed.

2020 Modular upgrade requires administrator
privileges.

2021 %1 not installed, modular upgrade cannot be
performed.

2022 Modular upgrade of %1 declined.

2023 Modular upgrade of %1 denied. Installed version
of %1 was not %2.

2024 Uninstallation of %1 successful.

2025 Uninstallation of %1 successful. Reboot needed.

2026 Installation could not proceed due to problems
regarding an existing installation.

2027 Modular upgrade could not proceed due to
problems regarding an existing installation.

2028 Operating system version no longer supported by
installation program.

2029 Installation could not proceed since a Personal
version with incompatible classification is already
installed on the system.

4000 Installation of %2 failed. Contact support.

Installation on Windows

77

Note
Note: %1 is replaced by product name and %2 is replaced by program version.

78

Chapter 12. Installation on Macintosh
Introduction

Personal is distributed via a so called disk image file (.dmg), which is opened automatically after
downloading into e.g. Safari or Mozilla.

Install
To install Personal, drag and drop Personal.app to the hard drive, e.g. to the desktop or to a location
under /Applications.

The installation will be completed when Personal is started the first time. A few messages will be
displayed and the user will be informed when the disk image file is opened.

In addition, the following actions are taken:

• PersonalPlugin.bundle (containing the browser plugin) is copied to the users plugin folder ~/
Library/Internet Plug-Ins

• The PKCS#11 module, tokenapi.framework, is installed in the browser.

• A folder to store Internal Store is created under ~/Library/Application Support/se.nexus.Personal

• Based on a sample file in Personal.app, an active configuration file is created in ~/Library/
Preferences/se.nexus.Personal.cfg

• Temporary files are stored under ~/Library/Caches/se.nexus.Personal

Uninstall
When the user selects Uninstall from the Application menu, Personal will be uninstalled and the
following files will be deleted:

• ~/Library/Preferences/se.nexus.Personal.cfg

• ~/Library/Internet Plug-Ins/PersonaPlugin.bundle

• ~/Library/Caches/se.nexus.Personal

79

Chapter 13. Installation on Linux
Introduction

The installation program consist of a compressed tar file named
personal<VERSION_NUMBER>.tar.gz.

Install
To install Personal, you need to run the Linux command tar to unpack the installation program and
then run the installation script install.sh as root with the parameter i:

sudo personal-<VERSION_NR>/install<VERSION_NR>.sh

The installation script will perform the following steps:

• All application files, dynamic libraries, language packages, master configuration file, icons and etc
are placed under /usr/local/lib/personal.

• Soft links to the dynamic libraries are created in /usr/local/lib.

• Soft link to the Firefox plug-in library is placed under the designated plug-ins library location for
the respective versions of Firefox supported.

• Soft links to the application startup script, personal.sh and persadm.sh, are placed under /usr/
local/bin/personal.

• The Nexus Personal Desktop configuration file personal.desktop is placed under /usr/share/
applications. This makes the Personal main application accessible from the Applications menu
on the Desktop.

• The /usr/local/lib directory is added to the /etc/ld.so.conf.

If any of the above fails, the installation will end with an error message.

If Personal is configured to register the PKCS#11 module in Firefox browser it will be done each time
Personal starts. To get Personal working with proxy settings, read the comments in the script /usr/local/
lib/personal/personal.sh how to manually change the proxy environment variables. This is relevant for
the parameter TokenRemovedURL in the authentication Plug-in if proxy settings are needed to be set.

Uninstall
To uninstall Personal, run the installation script (under /usr/local/lib/personal)

install.sh

This will remove all files installed by the installation program.

Note that the user data located under the directory .personal in each user’s home directory is not
removed.

If the PKCS#11 module is registered in Firefox browser, it has to be manually removed.

80

Chapter 14. Installation on Citrix
Introduction

Nexus Personal is validated on a Citrix environment based on Citrix Xenapp 6 on Windows 2008 R2,
and ICA Client 10 on Windows 7. Citrix supports the use of PC/SC-based cryptographic smart cards,
which is the smartcard communication protocol used by Personal.

Install
On such environments, Personal is installed on the server, following regular “ Installation on
Windows” instructions. There is off-course no need to install it on the client workstation. The pre-
requisites for this will be:

• Activation of smartcard relay in MSTSC (options, local resources, other) [CC note, to be verified]

• Having a running smartcard reader on the workstation

Note

The smartcard reader must be attached before launching the ICA session. When the reader
is attached after the ICA session is launched, users must disconnect and relaunch the ICA
session to use the smart card inside the session (Refer to http://support.citrix.com/article/
CTX132230 for details)

Nexus do not provide dedicated support for Citrix. More information can be found on
Citrix support web site: http://support.citrix.com/proddocs/topic/xenapp6-w2k8-admin/ps-
securing-use-smt-crdw-cps.html

81

Chapter 15. Administration
Personal GUI

The User Interface for Personal is used to view and administrate token properties and certificates. The
full User Interface is described in this chapter. In summary, the User Interface can be used for the
following tasks:

1. Viewing certificates.

2. Viewing tokens.

3. Changing PIN codes.

4. Importing external software tokens.

5. Exporting software tokens to external files.

6. Setting the paths to external PKCS #12 files stored on various media.

7. Changing the settings for web browser integration.

Administration GUI
Personal provides a GUI that is used for administration of the tokens, web browsers, languages and
other settings. The administration functions are available in the main application window which can
be launched from either Start -> Programs -> Personal <version number> -> Personal, by double-
clicking on the Personal tray icon, or by selecting Open command after right-clicking the tray icon.

Figure 15.1. Administration GUI

The main application window can either be displayed in minimized mode where only the task buttons
are shown, or in advanced mode where even the tokens are shown. The re-sizing is made either with
the button in the lower right corner, or using the command Show tokens in the View menu.

Further, the available tokens can be displayed as small or large sized icons. Small icons are displayed
when the command Detailed list is selected from the View menu, and large icons when the command
Large icons is selected.

Administration

82

Import and Export
When importing and exporting soft tokens, wizards are launched to guide the user through the process.
Soft tokens in PKCS #12 files can be imported to or exported from the Internal Store.

Internal Store
The purpose of having an Internal Store is to prevent attacks where the PKCS #12 file is copied
by a virus, trojan horse or downloaded from a shared disk. As the PKCS #12 may be protected
by a simple password, it could then be broken by a dictionary attack. The Internal Store adds a
secondary encryption layer, based on the user's logon credential (please refer to “ Appendix C - Internal
Stores” for further details), thus making dictionary attacks more difficult. In order for Personal to be
interoperable with other products, it allows import and export of standard PKCS #12 files to and from
the Internal Store.

Import Soft Tokens
By using the Import wizard, the PKCS #12 file can be imported into the Internal Store, where
the private key is protected by Microsoft Windows Data Protection. The CryptoAPI function
CryptProtectData is used to protect the private key. CryptProtectData is used in user mode, meaning
that the protection is bound to the user's profile instead of the hardware (please refer to “ Appendix C
- Internal Stores” for further details). The Import wizard is either started with the Import button in the
main application window or from the Import command in the File menu.

Figure 15.2. Import Soft Tokens

Administration

83

Export Soft Tokens

When the Export wizard is used, a protected soft token can be exported into a standard PKCS #12 file.
The Export wizard is either started with the Export button in the main application window or from
the Export command in the File menu.

Figure 15.3. Export Soft Tokens

Managing PIN Codes
In order to manage the PIN codes of a token, a wizard is launched to allow for either changing or
unblocking the PIN code. The unblocking feature is by definition only available for smart cards.

Administration

84

Figure 15.4. Managing PIN Codes

The PIN Management Wizard is started with the PIN button in the main application window, from
the PIN management command in the File menu, or by right-clicking on an imported soft token and
selecting the PIN management command.

Searching for Soft Token
Personal provides functions for mounting drives or directories with stored PKCS #12 files. This
feature is available by selecting Preferences in the View menu. In the Preferences window, select the
Electronic Identity Token Search tab.

Administration

85

Figure 15.5. Searching for Soft Token

By marking the check box Enable Token search, the mounted drives are scanned for stored PKCS #12
files when the OK button is clicked. By using the Browse… button, drives with PKCS #12 files can
be selected. The drive is added to the list of used disks by clicking the Add button, and removed by
clicking the Remove button.

USB drive, CD-ROM, and hard drive paths can be added to the list but not floppy disks. To use a
floppy disk, select the option “Enable Token search on floppy disk”. Subdirectories on the floppy disk
are not searched.

If the states of the PKCS #12 files on the floppy disk have been changed, Personal is not updated
automatically. Select the Refresh command in the View menu to update the tokens in Personal.

This feature facilitates mobility, as PKCS #12 file can be stored on a floppy disk, USB-drive, or CD-
ROM, which can be used when travelling. Using a hard drive path allows for interoperability with
other PKI clients that may need access to the same PKCS #12 file.

Web Browser and Language Settings
Personal provides functions for configuring the security settings of Mozillabased browsers. This
feature is available by selecting Preferences in the View menu. In the Preferences window, select the
Web Browser and Language tab.

Administration

86

Figure 15.6. Web Browser and Language Settings

Language
In the Language entry, a preferred language can be chosen. As default, the operating system language
is used. If the operating system language is not supported by Personal, English will be chosen as
default language in Personal.

Using Personal in the Browser
“Enable Personal in browser” is an option that should be selected if the user has a browser from
Mozilla or Firefox. This option will configure these browsers to use the Nexus PKCS#11 cryptographic
module.

Normally, during SSL negotiations, these browsers will automatically select an available certificate.
Such an action is not wanted. The browsers should always ask the user which certificate to use. This
preferred action will be taken if the option "Enable Personal in browser" is selected.

Controlling Secure Sessions in the Browser
NetDetacher is a module in Personal that handles SSL sessions. The behavior of NetDetacher is
controlled by settings in this dialog box.

Administration

87

When a token is used in an encrypted and authenticated session (SSL session), the encryption key will
be stored in the browser. Even when the token is removed, the session remains valid. This can result
in a security flaw unless the session is terminated when the token is removed. As it is not possible to
kill only the ongoing session(s), the browser itself has to be terminated.

NetDetacher can be configured to ask the user each time a used token is removed. This feature will
be obtained when the option “Do not ask in the future” is not selected. If you do not want to be asked,
select this option and, in addition, decide which default action the browser should take, i.e. whether
to leave the session or to close it.

Advanced
Personal provides functions for getting information about installed operating system, browsers, and log
settings. These features are available by selecting the Preferences in the View menu. In the Preferences
window, select the Advanced tab.

Figure 15.7. Advanced

Logging

In the Logging entry, trace files can be enabled. By clicking the Browse button, a directory can be
selected for the three trace files that will be created:

• In the file Nx_prs.log, all operations carried out in the Token API are logged.

• In the file Nx_csp.log, all operations carried out in Personal CSP are logged.

• In the file Nx_p11.log, all operations carried out in Personal PKCS#11 are logged.

Operating System

In the Operating System entry, information on the installed operating system and patches is displayed.

Installed Web Browsers

In the Installed Web Browsers entry, information on the installed web browsers and patches is
displayed.

Troubleshooting Password Dialogs

In the Troubleshooting Password Dialogs section, settings for secure-desktop issues are found. Here
you can activate two methods for disabling the SwitchDesktop command for other processes to ensure
secure-desktop functionality and security.

Card Readers
The Card Readers tab contains a list of readers available to Personal.

Administration

88

Figure 15.8. Card Readers

Double-click a reader in the list of available readers to see what version of the reader you have installed.

In order to optimize card access, the contents of a card is cached in Personal. The card serial number
is mapped to a particular card file. If the button Empty Cache is clicked, all files containing cached
card information will be deleted. This feature is available to prevent a corrupt cache file from making
a card unusable. The next time the card is inserted in the card reader, a new cache file will be created.

Tray Icon
Note

This section applies to Windows only.

In the system tray, a Personal tray icon is displayed. By double-clicking on this tray icon, the main
application window is launched. When right-clicking on the Personal tray icon, the following options
are available:

• By clicking the Tokens command and selecting Enable Token search, the search function described
in “ Searching for Soft Token ” is activated. In addition, all available tokens are shown in the Tokens
list. If you click on a token in the list, detailed information about that token will be presented in
a window.

Administration

89

• By clicking the Open command, the main application window is launched.

• By clicking Preferences, the main application Preferences window is launched.

• By selecting the Refresh command in the View menu, Personal will be updated with the current
contents of the floppy disk. This command is only available if a floppy disk drive is connected to
the system and searching for soft tokens on floppy disk is enabled.

• By clicking Exit, Personal will terminate.

About
In the main application window, the command About Nexus Personal can be selected under the Help
menu. In the "About Nexus Personal" box, information about Personal is displayed. By clicking the
Components… button, all installed Personal components and their versions will be displayed.

Figure 15.9. About

Help
Online help is available from the Help menu. It is also possible to click the F1 button in various dialogs
to get context-sensitive help about the active dialog window.

90

Abbreviations
A
API (Application Programming
Interface)

B
BLOB (Binary Large OBject)

C
CMC (Common Messaging
Call)

COM (Component Object
Model)

(Windows only)

CSP (Cryptographic Service
Provider)

(Windows only)

D
DPAPI (Data Protection API) (Windows only)

G
GUI (Graphical User Interface)

GUID () Global Unique IDentifier

I
IPC (Inter Process Calls)

M
MSCAPI (Microsoft
Cryptographic API)

(Windows only)

N
NPAPI (Netscape Plugin API)

O
OTP (One-Time Password)

91

References
[1] ANSI X9.17-1995 Financial Institution Key Management (Wholesale). . 1995. Appendix C. 1

[2] ANSI X9.31-1998 Digital Signatures using Reversible Public Key Cryptography for the Financial Services
Industry (rDSA) . . 1998. Appendix A.

[3] Riemann's hypothesis and tests for primality. Gary L. Miller. 300–317. 10.1016/S0022-0000(76)80043-8.
Journal of Computer and System Sciences. 13. 3. December 1976. 0022-0000.

[4] Probabilistic algorithm for testing primality. Michael O. Rabin. 128–138. 10.1016/0022-314X(80)90084-0.
Journal of Number Theory. 12. 1. February 1980. 0022-314X.

[5] Certificate Management Messages over CMS. M. Myers, , X. Liu, , J. Schaad, , and J. Weinstein. April 2000.

[6] PKCS #11 v2.20: Cryptographic Token Interface Standard Draft 4. .

[7] Nexus Personal Message Reference Guide.

[8] Signature Profile for BankID (vers 1.4.3).

Note

Technology Nexus AB is not responsible for the contents of external Internet sites.

1Because ANSI has withdrawn X9.17, the appropriate reference is to ANSI X9.31

92

Appendix A. Eolas Patent
Introduction

Note

This Appendix only applies to the Windows platform.

As a result of an adverse verdict against Microsoft in a patent infringement lawsuit brought by the
University of California and Eolas Technologies, Microsoft may change the way active content is
activated in Internet Explorer. This includes loading ActiveX controls, such as the Personal browser
plugins.

For the moment, Microsoft has put these changes on hold until questions around validity of the Eolas
Patent have been clarified.

More information about the Eolas patent issue can be found on http://msdn.microsoft.com/ieupdate/.

The change (if Eolas Patent is valid) will mean that if an ActiveX control is loaded using the
<OBJECT> tag and have any <PARAM> tags, the browser will show a warning dialog, and the user
will have to press OK, in order to load the control. There are two solutions below describing how to
avoid the showing of the warning dialog.

Solution 1
If the control does not load any dynamic data through the <PARAM> tags, such as URIs, it is possible
to specify the attribute NOEXTERNALDATA='true' in the <OBJECT> tag, and the warning dialog
will not be shown. However if this is done, the browser will not load any <PARAM> that might be
URIs. This includes any parameter values including the characters “.” and “/”.

If needed, parameters including these characters (including URIs) might then be set using script
functions.

Solution 2
It is also possible not to script the actual control, but rather create a script function that inserts the
<OBJECT> and <PARAM> tags into the HTML page. The script function must be defined in a separate
file, and not in the HTML file. The browser then should not show the warning dialog.

For more information regarding this workaround, please refer to http://msdn.microsoft.com/ieupdate/.

93

Appendix B. Key Generation
Software Key Generation

Personal uses ANSI X9.17 and a Miller-Rabin test with five repetitions for key generation.

For more information, see the following references: [1], [2], [3], and [4].

94

Appendix C. Internal Stores

Background
An Internal Store is the place where Personal stores tokens belonging to a user. Each token corresponds
to a file in the Internal Store directory. There are two different types of Internal Stores and these are
called 1.0 and 1.1 respectively.

Note

The store type is specified per file (as explained in “File Formats” on page 126) and not per
Internal Store.

In an Internal Store of type 1.0, the tokens are protected by a PIN code.

In an Internal Store of type 1.1, in addition to the PIN code protection, the tokens are protected by
means of a data protection API (DPAPI) that uses encryption with a key derived from the user's
Windows logon password (Windows only). Personal, or other applications managing PKCS#5, will
not be able to read a file protected by DPAPI.

Different Windows versions support different types of Internal Store as indicated by the following
tables.

Internal Store types in Personal 4.0

Win98 WinME WinXP Home WinXP Pro Win2000

All
environments

1.0 1.0 1.1 1.1 1.1

Internal Store types in Personal 4.0.1 and later versions

Win98 WinME WinXP
Home

WinXP Pro Win2000 Win Vista

Standalone* 1.0 1.0 1.1 1.1 1.1 1.1

Asserted
non-NT4
domain**

N/A**** N/A N/A 1.1 1.1 1.1

Not
Asserted
non-NT4
domain***

N/A N/A N/A 1.0 1.1 1.0

Comments to the table * Computer does not belong to a domain. ** At least one (primary) domain
controller responds that it is running either Windows 2000 or Windows 2003. *** "Not asserted non-
NT 4 domain" means it cannot be asserted that at least one (primary) domain controller is not running
Windows 2000 or Windows 2003. The reason for this can be that the domain controller is not reachable
(unplugged network cable) or that it responds that it indeed is running NT4. **** OS cannot belong
to a domain.

Note

The type of Internal Store cannot be seen from the application in Personal 4.0 but it is visible
in the Token View dialog in Personal 4.0.1 and later.

Internal Stores

95

File Formats
There exist different file formats in different versions of Personal as shown in this table.

File format Introduced in Personal vers. Comments

0 4.0 The first version of the file
format. Personal will migrate
those tokens to the default file
format when possible.

1 4.0.1 A version field is introduced in
the first ASN.1 object to identify
the file version.

2 4.5 In this format, the MAC
excludes sub CA certificates.

3 4.7 Encrypted Token objects with
PKCS#5 encryption are encoded
according to the PKCS#5 v2.0
standard. The difference from
format version 2 is that those
objects are ASN.1 encoded using
the data structures PBES2 and
PBKDF2 instead of PBES1 and
PBKDF1.

4 4.8 In this format all attributes of a
token and its objects are stored in
bigendian byte ordering.

5 4.9 In this format, a bug, introduced
in Personal 4.8, has been
fixed. With this format it is
now possible to move a token
between format 1.0 and 1.1
without having problems with
PIN verification.

Note

The file format of the stored tokens cannot be seen from the GUI in either version of the
application.

The file format used in Personal 4.0 is not supported in later versions of Personal, but it is possible
to convert the file format of the Internal Store tokens created in Personal 4.0 if the Migration Wizard
is invoked.

If there are tokens in file format version 0 when a later version of Personal is installed, the Migration
Wizard will be started automatically and a PIN code must be entered for each token to be migrated.
The new file format will vary depending on which version of Personal is installed.

If there are tokens in file format versions 0, 1 or 2 when Personal 4.7 or later is installed, these tokens
will be upgraded to version 3 automatically in any scenario where the user needs to enter the PIN code,
since the PIN code is required in order for the format upgrade to take place.

Object Identifiers related to the Internal Store Token

Internal Stores

96

ProtectedStoreToken OBJECT IDENTIFIER ::= 1.2.752.36.4.1.2
P5EncryptedObject OBJECT IDENTIFIER ::= 1.2.752.36.4.1.3
DPAPIEncryptedObject OBJECT IDENTIFIER ::= 1.2.752.36.4.1.4
DPAPIEncryptionAlgorithmId OBJECT IDENTIFIER ::= 1.2.752.36.4.1.5

A token file in Personal 4.0.1 and later has the following ASN.1 structure.

Protected store token ::= SEQUENCE {
 fileVersion FileVersion,
 attributes Attributes,
 softTokenObjects SoftTokenObjects,
 mac Mac
}
FileVersion ::= INTEGER
Attributes ::= OCTET STRING
SoftTokenObjects ::= SET OF SoftTokenObject
SoftTokenObject ::= SEQUENCE {
 identifier OBJECT IDENTIFIER
 objectData OCTET STRING
}
When the SoftTokenObject is a ProtectedStoreObject (1.2.752.36.4.1.2) the
objectData OCTET STRING encapsulates
SEQUENCE {
 attributes OCTET STRING
 objectData OCTET STRING
}
Mac ::= OCTET STRING

In this file format, the first ASN.1 object contains an integer to identify the file format version. The
value for a specific version of Personal can be read from the table in “File Formats” on page 126.

In addition, the MAC value is calculated differently (see “MAC Calculation” on page 131 for more
information).

The private key storage without DPAPI protection has the following structure in file format versions
0, 1 and 2.

OBJECT IDENTIFIER '1 2 752 36 4 1 3' (P5EncryptedObject)
OCTET STRING, encapsulates {
 SEQUENCE {
 OBJECT IDENTIFIER '1 2 752 36 4 1 2' (ProtectedStoreToken)
 OCTET STRING, encapsulates {
 SEQUENCE {
 OCTET STRING
 [00 00 00 00 00 00 00 00 04 …]
 OCTET STRING, encapsulates {
 SEQUENCE {
 INTEGER 0
 SEQUENCE {
 OBJECT IDENTIFIER
 data (1 2 840 113549 1 7 1) (PKCS #7)
 SEQUENCE {
 OBJECT IDENTIFIER
 pbeWithSHAAnd3-KeyTripleDES-CBC (1 2 840 113549 1 12 1 3) (PKCS #12 PbeIds)
 SEQUENCE {
 OCTET STRING
 [D6 C0 2C 96 AD 3A 3D 4D B2 FE…]
 INTEGER 8192
 }
 }

Internal Stores

97

 [0]
 [2E F3 49 DC 0B DA 38 F2 88 15...]
 }
 }
 }
 }
 }
 }
}

The private key is protected by 8192 iterations of SHA-1 with TripleDESCBC encryption.

The private key storage without DPAPI protection has the following structure in file format 3.

OBJECT IDENTIFIER '1 2 752 36 4 1 3' (P5EncryptedObject)
 OCTET STRING, encapsulates {
 SEQUENCE {
 OBJECT IDENTIFIER '1 2 752 36 4 1 2' (ProtectedStoreToken)
 OCTET STRING, encapsulates {
 SEQUENCE {
 OCTET STRING
 [00 00 00 00 00 00 00 00 04 …]
 OCTET STRING, encapsulates {
 SEQUENCE {
 INTEGER 0
 SEQUENCE {
 OBJECT IDENTIFIER
 data (1 2 840 113549 1 7 1) (PKCS #7)
 SEQUENCE {
 OBJECT IDENTIFIER
 pkcs5PBES2 (1 2 840 113549 1 5 13) (PKCS#5 PBES2)
 SEQUENCE {
 SEQUENCE {
 OBJECT IDENTIFIER
 pkcs5PBKDF2 (1 2 840 113549 1 5 12) (PKCS#5 PBKDF2)
 SEQUENCE {
 ...
 (**)
 INTEGER 8192
 }
 }
 SEQUENCE {
 OBJECT IDENTIFIER
 des-EDE3-CBC (1 2 840 113549 3 7)
 OCTET STRING
 FE 07 6B 5A EE 03 A7 25
 }
 }
 [0]
 [2E F3 49 DC 0B DA 38 F2 88 15...]
 }
 }
 }
 }
 }
 }
 }
 }
 (**) Is the salt, which can be encoded differently depending on which type of
 salt is used (specified in PKCS#5 v2.0).

The private key is protected by 8192 iterations of SHA-1 with TripleDESCBC encryption.

The private key storage with DPAPI protection has the following structure.

Internal Stores

98

 OBJECT IDENTIFIER '1 2 752 36 4 1 3' (P5EncryptedObject)
 OCTET STRING, encapsulates {
 SEQUENCE {
 OBJECT IDENTIFIER '1 2 752 36 4 1 4' (DPAPIEncryptedObject)
 OCTET STRING, encapsulates {
 SEQUENCE {
 OBJECT IDENTIFIER '1 2 752 36 4 1 2' (ProtectedStoreToken)
 OCTET STRING, encapsulates {
 SEQUENCE {
 OCTET STRING [00 00 00 00 00 00 00 00 …]
 OCTET STRING, encapsulates {
 SEQUENCE {
 INTEGER 0
 SEQUENCE {
 OBJECT IDENTIFIER data (1 2 840 113549 1 7 1) (PKCS #7)
 SEQUENCE {
 OBJECT IDENTIFIER '1 2 752 36 4 1 5'
 (DPAPIEncryptionAlgorithmId)
 NULL
 }
 [0]
 [01 00 00 00 D0 8C 9D DF …] (***)
 }
 }
 }
 }
 }
 }
 }
 }
 }
}
(***) is the data that when decrypted with DPAPI will yield the underlying
PKCS#5 encrypted private key as shown in one of the two previous examples,
depending on the file format version.

MAC Calculation
The MAC calculation varies depending on the version of the file format.

• For version 1, the MAC includes all CA certificates on the token.

• For version 2 and later, the MAC includes only the Root CA.

99

Appendix D. CSP and PKCS#11
Configuring
Platform dependencies

Note

CSP only applies to the Windows platform.

Implementation
In the configuration file personal.cfg (on Windows and Linux) and
se.nexus.personal.cfg (on Mac), there is a section named [CSP_PKCS11] holding settings
related to PKCS#11 and CSP.

In this section there is a parameter named Sections defining which applications are using specific
settings. If there is more than one application, they should be separated by semicolons.

CSP is using the config API to get settings from configuration file. The config API works according
to the following principles:

1. Get the process name and check if it is one of the applications specified by parameter Sections.

2. When the name is specified by Sections and there is a key defined for that process, use that key. If
a key is missing use the value in [CSP_PKCS11] containing the global settings.

3. If the specified config parameter is neither in the process specific section nor in the global section,
the application will behave according to the default settings compiled into CSP and PKCS#11.

When CSP and PKCS#11 are loaded by an application, the config file is automatically updated
with a section for the calling application if that section does not already exists. This means that
if, for example, the program CTest (CTest.exe) is loading PKCS#11, the first time, the config file
will be updated. CTest.exe is added to the parameter Sections and a new section [cstest.exe] is
created for CTest.

Example: The following example will show a typical excerpt from a config file:

 [CSP_PKCS11]
 CSP_DefaultKeyContainer=\\.\Card Reader X 0\
 CSP_IgnoreFlagSilent=0
 P11_AlwaysLoggedInMode=0
 Sections=app1.exe;app2.exe
 [app1.exe]
 CSP_EnableFlagNoHashOid=0
 CSP_IgnoreFlagSilent=1
 [app2.exe]
 P11_AlwaysLoggedInMode=1
 CSP_DefaultKeyContainer=\\.\Card Reader 2 0\

100

Appendix E. PIN-Related Issues
PIN Caching

In Personal it is possible to cache PIN codes in the PKCS#11 and the CSP (Windows only) modules.
This is the case when Personal is run in PIN caching mode. Personal can also run in PIN non-caching
mode. Then no PIN caching will take place.

The PIN caching can be configured with the configuration parameters CSP_EnableCachePIN and
P11_EnableCachePIN in personal.cfg. If set to 1, PIN caching is enabled, and when set to 0, PIN
caching is disabled.

PIN caching applies to all tokens, i.e. both smart card and software tokens.

This appendix highlights various aspects of the different operation modes.

Note

When the term card is used throughout this description it only applies to smart cards. When
the term token is used it applies to both smart cards and software tokens.

Sometimes, card specific information is marked with the icon

PIN Caching Mode
Each process that loads the PKCS#11 and the CSP modules has its own PIN caching environment.
When a successful login is performed, the PIN is internally logged out and is stored in the PIN caching
environment in the given process. The cached PIN will later be used as soon as a private operation is
performed. As soon as a private operation is performed the PIN is internally logged out.

If the CSP and PKCS#11 are loaded into the same process, they will share PIN caching environment.

When running an application in PIN caching mode, the card is always accessible from other
applications since the card will always be released when an operation that needs private card
access has been performed.

Note

This section only applies to the Windows platform.

A PIN is cached on a token basis. In one process, all contexts accessing a specific token will have
access to the cached PIN code. The PIN code is cleared from the cache as soon as the last context of
a specific token is released, or when the token is removed from its reader.

PKCS#11 Specific Information

Since every PKCS#11 slot represents one PIN, the PIN is cached on a slot basis. In one process, all
sessions accessing a specific slot will have access to the cached PIN code. As soon as C_Logout is
called, or the last session to a specific slot is closed, the PIN is cleared from the cache. Also, if the
specific token is removed, the PIN is cleared form the cache.

PIN Non-Caching Mode
In PIN non-caching mode the calling application has the control of the login states of the tokens.

PIN-Related Issues

101

If the CSP and PKCS#11 are loaded into the same process, they will share the login state of the token.

If no PIN caching is used, the card will be exclusively locked by the calling process as long
as the user is logged in. Thus, it will not be accessible from other applications until it is
released.

CSP Specific Information

Note

This section only applies to the Windows platform.

If a context is logged into a token, that logged in state can be used by all other contexts accessing that
specific token. The token will be logged out as soon as the last context to the token is released.

A card will not be accessible to other processes until the card is logged out.

It is possible to configure the CSP to always log out after it has performed an operation that needs
logged in state. The configuration parameter is CSP_LogoutAfterSign and when set to 1, the token
is logged out after a private operation.

PKCS#11 Specific Information

If a session is logged into a slot, the slot will be accessible from all other sessions to that slot in the
calling process. The token will be logged out as soon as C_Logout is called, or all sessions to a given
slot are closed.

A card will not be accessible to other processes until the card is logged out.

It is possible to configure the PKCS#11 to always log out after it has performed a signing operation.
The configuration parameter is P11_LogoutAfterSign and when set to 1, the token is logged out after
a signing operation.

Configuration Details
Assume that we have a scenario where the user has logged into a token in order to sign a hash with
his private key present on the token.

The table below, which applies to the Windows platform only, shows the behavior of the CSP in
different combinations of the flags CSP_EnableCachePIN and CSP_LogoutAfterSign.

CSP_EnableCachePIN=0 CSP_EnableCachePIN=1(default)

CSP_LogoutAfterSign=0(default)A card that is logged in is locked
by the calling application until
the last context to the card is
released.

A card is released after every
private operation and will thus
be accessible to other processes.

CSP_LogoutAfterSign=1 A logout is forced after every
private operation. As a result,
the user will be asked for his
PIN prior to every operation
requiring that he is logged in.

A logout is forced after every
private operation. As a result,
the user will be asked for his
PIN prior to every operation
requiring that he is logged in.

The table below shows the behavior of the PKCS#11 in different combinations of the flags
P11_EnableCachePIN and P11_LogoutAfterSign. P11_EnableCachePIN=0

P11_EnableCachePIN=1(default)P11_LogoutAfterSign=0(default)

P11_LogoutAfterSign=0(default)A card will not be accessible
from other applications as long
as it is in logged in state.

The token is internally released
after every private operation. A
card will be accessible from

PIN-Related Issues

102

P11_EnableCachePIN=1(default)P11_LogoutAfterSign=0(default)

other applications even if it is
logged in.

P11_LogoutAfterSign=1 A logout is forced after every
signing operation. A card will
not be accessible from other
applications as long as it is in
logged in state.

A logout is forced after every
signing operation. The token
is internally released after
every private operation. A card
will be accessible from other
applications even if it is logged
in.

Force Login Before Sign
Personal can be configured to require a PIN-reverification prior to a signing operation with a key,
when the key or the corresponding certificate has a specific key usage.

The configuration parameter is ForceLoginBeforeSignKeyUsage in the file personal.cfg. (See the
delivered sample configuration file for more information about this parameter.)

Only the key usage extension Non-Repudiation is supported.

Example: If PIN-reverification should be performed prior to every non-repudiation signature, Personal
should be configured as follows:

 [CSP_PKCS11]
 ForceLoginBeforeSignKeyUsage=0x40

	Nexus Personal
	Table of Contents
	Introduction
	About this Document
	Screendumps

	Product Overview
	Web Browser Plug-Ins
	Cryptographic APIs
	Administration
	NetDetacher

	Product Structure
	Personal Process
	Browser Process
	Third-Party Applications

	GUI Branding
	Environment
	What is New in this Version
	Where to Find the Information
	Release.txt
	Help

	How to Contact Us

	Chapter 1. Functional Description Overview
	Architecture
	WebSigner
	Signer2
	Authentication
	Registration Utility
	Administration Plug-in
	Version Plug-in
	LogoutTokens Plug-in

	Cryptographic APIs
	Microsoft CSP
	PKCS#11

	Installation and Updating
	Soft Token Migration
	Integration with Standard Products
	Integration with Internet Explorer
	Integration with Mozilla-Based Browsers

	Branding
	Branding on Windows platforms
	Branding on Mac OS X
	Branding on Linux

	Card Reader Support

	Chapter 2. WebSigner Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Usage and GUI
	Sample Web Pages
	Digital Signature Format

	Chapter 3. Signer2 Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Sample Web Pages
	Internet Explorer
	Mozilla-based browsers
	Signer2 Signature Sample

	Error Codes

	Chapter 4. Authentication Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Sample Web Pages
	Internet Explorer
	Mozilla-based browsers
	Authentication Signature Sample

	Error codes

	Chapter 5. Registration Utility Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Usage and GUI
	Creating a Token
	Store Certificates
	PIN Policy

	Sample Web Pages
	Internet Explorer
	Mozilla-based browsers

	Error Codes
	Format of a CMC Request and Response
	Request
	One Time Password
	Response

	Chapter 6. Administration Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Sample Web Pages
	Internet Explorer
	Mozilla-based browsers

	Error codes
	Configuration

	Chapter 7. LogoutTokens Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Usage
	Sample Web Pages
	Security Issues

	Chapter 8. Version Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Sample Web Pages
	Output format

	Chapter 9. Personal PKCS#11
	Introduction
	Mozilla Browsers
	PKCS #11 API
	General Purpose
	Slot and Token Management
	Session Management
	Object Management
	Encryption and Decryption
	Message Digesting
	Signing and Verifying
	Key Management
	Random Number Generation
	Interoperability

	PKCS#11 Configuration

	Chapter 10. Personal CSP
	Introduction
	CSP Information
	CSP Functions
	CSP Connection
	Key Management
	Hashing and Digital Signatures
	Encryption

	Interoperability
	Additional Comments

	Using XEnroll with Personal CSP
	Container Name
	Blank container name
	Card reader name
	Card reader name and ID
	Unknown container name

	Example

	CSP Configuration

	Chapter 11. Installation on Windows
	Program Requirements
	The Installation Program
	Packaging
	Installation Conditions
	Installation Configuration
	Installation Options
	Messages from the Installation Program
	Shortcuts
	Installation Directory Tree

	Web Installation Flowchart
	Limitations

	CSP & PKCS#11
	Plug-ins and ActiveX Controls
	Upgrade and Migration
	Uninstall
	Controlling the Behavior of Winlogon
	Event Log and Return Codes

	Chapter 12. Installation on Macintosh
	Introduction
	Install
	Uninstall

	Chapter 13. Installation on Linux
	Introduction
	Install
	Uninstall

	Chapter 14. Installation on Citrix
	Introduction
	Install

	Chapter 15. Administration
	Personal GUI
	Administration GUI
	Import and Export
	Internal Store
	Import Soft Tokens
	Export Soft Tokens

	Managing PIN Codes
	Searching for Soft Token
	Web Browser and Language Settings
	Language
	Using Personal in the Browser
	Controlling Secure Sessions in the Browser

	Advanced
	Logging
	Operating System
	Installed Web Browsers
	Troubleshooting Password Dialogs

	Card Readers
	Tray Icon
	About
	Help

	Abbreviations
	References
	Appendix A. Eolas Patent
	Introduction
	Solution 1
	Solution 2

	Appendix B. Key Generation
	Software Key Generation

	Appendix C. Internal Stores
	Background
	File Formats
	Object Identifiers related to the Internal Store Token

	MAC Calculation

	Appendix D. CSP and PKCS#11 Configuring
	Platform dependencies
	Implementation

	Appendix E. PIN-Related Issues
	PIN Caching
	PIN Caching Mode
	PKCS#11 Specific Information

	PIN Non-Caching Mode
	CSP Specific Information
	PKCS#11 Specific Information

	Configuration Details

	Force Login Before Sign

