Nexus Personal

Technical Description

Nexus Personal: Technical Description

Publication date 2013-10-31
Copyright © 2013 Technology Nexus AB

Nexus endeavors to ensure that the information in this document is correct and fairly stated, but does not accept liability for any error or
omission. The development of Nexus products and services is continuous and published information may not be up to date. It isimportant to
check the current position with Nexus. This document is not part of a contract or license save insofar as may be expressly agreed. Nexus has
been applied as atrademark of Nexus. All other trademarks are the property of their respective owners.

Table of Contents

Fg11goTo (¥ oi [l H PSPPSR UPPPPTPRPPPRINt iX
ADOUL thiS DOCUMENT ...ttt e e e e e b s iX
SCIEENAUMIIS ...ttt ettt ettt e e et e ettt e et e et s e e e et e e e e ebt e e eeeanaeeeen iX
PrOOUCE OVEIVIEIW ...ttt e e e et e e e iX
WED Browser PIUG-INS ...t iX
CryptographiC APIS ... X
AMINISITALTION ...t X
NEIDELACNET ... et X
PrOOUCE SEFUCIUNE ...ttt ettt e ettt e e e et e e e eba e eeens Xi
PErSONEL PrOCESS .. .eivtieieiii ettt et ettt Xi
BIOWSES PrOCESSiiiiiiiiie it Xi
Third-Party APPlICALIONScieeieieieii e e Xii

GUI BFanQiNg ...ceeeeeeeieie ettt ettt et e et e et e e e e s Xii
ENVITONIMENE ..ot et e et e e et e e e et eaeens Xii
What iS New in thiS VEISIONcoouiiiiiiiii e e Xii
Where to Find the INfOrmationoieiiiiiioiiii e Xii
REIBASEEXE ...t Xiii

HEI D e Xiii

HOW 10 CONLACE USiieiiiiiieiit ettt e Xiii
1. Functional DeSCIPiON OVEINVIEBWccouuuieiiiii ettt 1
ATCIITECTUNE ...ttt e e 1
WWEDSIGNET ..ot 2
SIONEI2 et 3
AULNENEICALTION ...t e e 3
REGISIration ULHITYoieeeeeiee e 3
AdMINiSration PIUG-INoceeeiee et 4
VESION PIUG-IN oottt et e e e e 4
LOGOULTOKENS PIUG-IN ...ttt ettt et eeeei e e e 4
CryptographiC APIS ... 4
IMHCIOSOt CSP ...ttt e e e e 5
PRCSHLL ..ottt et e een 5
Installation and UPOaLinNgceeeueniiiiiiiee et e e e e eeni e e 5
SOFt TOKEN MIGIaIION ...ttt ettt et e e e e e eeees 6
Integration with Standard ProdUCEScoeuuiiiiiiiiiccii e 7
Integration with Internet EXPIOrercoooviiiiiiiiiiie e 7
Integration with MozillarBased BrOWSEY'Sccuuueeiiiiieeieiiiieeeei e 7
BIaNGiNg ooeeeeeiiiii et 7
Branding on Windows platformsveieeiiioiiii e 7
Branding 0n MaC OS Xoouuiiiiiiiiiei ettt 7
Branding 0N LINUXco.uueiiiiiiiii ettt ettt e e et e e e et e eeenaa e eees 7

Card REAE! SUPPONT ... eeeei ettt ettt ettt ettt ettt e e et e e e et e e eaaas 7
2. WEDSIGNET PIUG-IN .ottt e e et e et e e e e e e e 8
INEFOTUCTION ...ttt e et e et e e e eeeens 8
PLUG-IN ACHIVELION ...t e et et e e et e e et e e e nb e eeees 8
INEEINEL EXPIOTEY ...ttt e 8
MOZilla-Based BrOWSEN'Sc.uuiiiiiiieicii e e e 9
ParaMELENS ... 9
S o] o1 oo PO PUPPRTRP 12
USBGE @NO GUI ..ottt et e e 13
SAMPIE WED PBOES ...ttt et 13
Digital SIgNature FOMMELuuiiiiiiieieii e 15
3 SN2 PLUGAIN e e et e 17
INEFOTUCTION ...ttt ettt e ettt e e ettt e e e e et e e e eena e eeeens 17
PLUG-IN ACHIVELION ...ttt 17
INEEINEL EXPIOTEY ...ttt e eees 17

Nexus Personal

MOZIHE&-Based BrOWSEY'Scivieiiiieeiieci et e e e e e e e e e e e e e e e et e e eanaeees 17

Al AMIELEIS ..ttt 18
S 111 0 [20
SAMPIE WED PAJES . ..ui ittt e e e e e 21
Fg10= 4 = q o o = 21
MOZIla-hased DIOWSEIScovuiiie e e 21
SIgNEr2 SIgNature SAMPIEovuiiiiii e 22

g (o oo === 23
4, AULhentiCation PIUG-iNciei e e e e e e e e e e e ees 25
g1 0T (1 1 o o TN 25
[T80 R Ao Y7 4 o o P 25
Fp10= 4 0= q o o = 25
MOZIHE&-Based BrOWSEY'Sciuieiiieeiieeee e e e e e e e e e e e e e e e et e e eaneeee 26

Al AIMIBEEIS ..ottt 26
S 111 0 [28
SAMPIE WED PAJES . ..ui it e e e e 29
Fp10= 4 0= q o o = 29
MOZIla-hased DIOWSEISccvuiiie e e 29
Authentication Signature Sampleooiiii i 30

g o ot (U 31
5. Registration ULty PIUG-IN ... e e e e e eeas 33
gL 0T (1 1 o o TN 33
[T80 R AN Y7 4 o o P 33
Fg10= 4 = q o o = 33
MOZIHE&-Based BrOWSEY'Siiieeiiieeieeeie et e e e e e e e e e e e e e e et e e eaneeee 34

Al AMIEEEIS ..ttt 34
S 1011 0 35
USAQE AN GUI L.oieiii e e e e e e a e 38
Creating @ TOKEN ...ovveiie e e e e e e e e 38
SAMPIE WED PAJES . ..eiiiiiiiii ettt et e e e e e 39
Fg10= 4 = q o o = 39
MOZIa-hased DrOWSEIScovniiiie e e e 40

g (o oo === 41
Format of a CMC Request and RESPONSEuuiiiiiiiii e e e e 42
L 0 1= SRS 42

ONE TIME PaSSWOIcivieiii e e e e e e e e e e e e eaaes 42

RS OIS ..ttt 42

6. AMINISLration PIUG-IN ...covni e e e e e 43
gL 0T (1 1o o TN 43
[T80 R AN Y7 1 o o 43
Fg10= 4 g T= B q o o = 43
MOZIHE&-Based BrOWSEY'Sciveeiiieeii e e et e e e e e e e e e e e e e e et e e eanaeee 44

Al AMIBLEIS ..ttt 44
S] o1 0 45
SAMPIE WED PAJES . ..uiiiiiiiiie ettt e e e e e e e 47
Fg10= 4 = q o o = 47
MOZIHa-hased DrOWSEIScovuiiii e e 47

g oot [48
(@0 011 To 8= 1 (o] o 1S 49
7. LOQOULTOKENS PlUGFIN .uiiiici e e e e e e e e e e e et e e e e e e e e aenas 50
g1 0T (1 1 o o TN 50
[T80 R Ao Y7 4 o o P 50
Fg10= 4 L= q o o = 50
MOZIHE-Based BrOWSEY'Siiiueiii e ecie e e e e e e e e e e e e e e e et e e eaneeee 51

Al AMIBEEIS ..ottt 51
S 111 0 51
L L= 0 PP PPPRPES 51
SAMPIE WED PAJES . ..uiiiiiiiii ettt e 52

Nexus Personal

SECUNMLY ISSUBS ...vuiiiieii ettt e e et e e e e e e e e e e e e e e e et e e et e e et e e et eeaaeeanns 53
IV = £ o] = 1UTo 1 o N 54
g1 0o (8ot [o U SPPRPPPIN 54
[T80 R Ao Y7 4 o o 54
Fg10= 4 = q o o = 54
MOZilla-Based BrOWSEN'Sc.uuuieiiiiiiieiiii ettt e e 55
ParaMELErS ... 55
S 111 0 [55
SAMPIE WED PAJES . ..uiiiiiiiii e e e e e 56
L 11 0| 0] 107 | 57
9. PErsonal PKICSHLLuuiiiiiii et e e e e e e 59
g1 0o [0 o [o PSP SPPPTPPPIN 59
MOZIHTA BIOWSEN'S ...ttt ettt et e e e e et e e e e et e e e eete e e e eataneeeeees 59
L ORI I N PP 59
GENEAl PUIMPOSE ...t e e e e e e e e e e e an s 59

Slot and TOKEN ManagemMENTuviieiei e e e e e e e e e e eeanas 59
SESSION MaANAGEMENT ...iiiiiii e e e e e e e et e et eaanas 60
ODbjeCt MaNagEMENT ... e e e e e e 60
Encryption and DECIYPLiONieiiiiiii e e 60
MESSAYE DIgESIING «.evvniiiiieiii et e 60
SIgning and VENTYING ..oouuiiiiciie e 61

KEY MaNAgEIMENTuuiiii e 61
Random NUMDEr GENEIrAtioNoovveuiieiiiiiii e eeaees 61
Fp10=] o1= = o1 11 N 61

[OS2 @0 1T 8 = 1 o] o PN 62
O = = o g O PSP 63
g1 [0 o [o ST SPPPTSPPPIN 63
L@ e 1 01 o110 1o o PPN 63
CSP FUNCLIONS ...ttt e e e et e e e et e e e et e e e e et 63
CSP CONMNECLION ...ttt e et e et e e et e e e e b e e e e ern s 63

KEY MaNAgEMENT ... 63
Hashing and Digital SIQNEIUMESc.uueiiiiiiiiieei e e e eaaes 64
Y/ (o o 64
Fa11= 0] o 1= = o 1 11 2 64
Additional COMMENESeiiiiiieeeii e 66
Using XENroll with Personal CSPccouiiiiiiiiii e 66
CONAINET NBIME ..vueeeeii e e e e e et e e e et e e e et e e e eate e 66
EXAMPIE e 67

(015 S @]y T 11 =10 o S 68
11, Installation 0N WINAOWSiiiiiiiei e e e e e e e eae s 69
Program REQUITEMENTSccuuiiiii et e e e e e e e e e e e e e e e et e e e e e et e e eaaaeeaneees 69
The INStallation Program ... oo e e e e e 69
[0 = o 11 0T N 69
Installation CONAItIONScovvieieiiie e 69
Installation ConfigUItionoieiiiiiiiiiei e e e e 70
INStAllEtionN OPLIONSccvuiii e e e e e e e et eeaaeee 70
Messages from the Installation Programccccoiveiiiieiiiiciin e 70
ShOMCULS .. e e e et 71
INStallation DIir€CIONY TTEE ...uiviiiiii et et e e e e e e e e e e e e e e e ens 71

Web Installation FIOWChArtoooouiiiiiii e 71
10071 1o = SRR 74

O 011 I P 74
Plug-ins and ACtiVeX CONIOISiiiiieieeie e e e e 75
Upgrade and Migrationcouuieiiiiiiii e e e e e e e aa e eaas 75
UNINSEAIL e 75
Controlling the Behavior of WiInlogonooovuiiiiiiiiiiiec e 75
Event Log and REIUIN COUESuuuiiiiieiii e e e e e e e e e e eaaes 75
12, Installation 0N MaCINEOSNuuiiiiiiiie et e e e e e e 78

Nexus Personal

g1 0o [0 o [o U SPPPSPPPIN 78
0 PR 78
UNINSEAIL e 78

G oS = = o g e o I L PSP 79
g1 0o (8ot [o U SPPRPPPIN 79
0 PR 79
UNINSEAIL e 79

] oS = = e g e o O 1 PSP 80
g1 (8ot [o OSSPSR 80
0 PR 80

N |0 T TR 1 = o o PP 81
L =0 0= PP 81
AdMINISIation GUIiieiiieci et e e e eaaans 81
T =T Lo I oo o A 82
T gt S o (= PP 82

IMPOIt SOft TOKENS ...t e e e e e e e e e eeeen 82

EXPOIt SOft TOKENS ...covniiiiiicii e e e e eeaaas 83

Managing PIN COUESuoiiiiieiii i e e e e e e e e eees 83
Searching for SOft TOKENcuuiii e e e e 84

Web Browser and Language SEttiNgSc.vueiiiiiiiicii e e e e e 85
LANQUAGE .. eutnee et 86

Using Personal in the BIOWSEYccouuiiiiiiciiii e e e e e e e 86
Controlling Secure Sessions in the BrOWSESccuveiiiiiiiiiieii e e 86

F 01V (o= o PP 87
[0 o1 1o [PP 87

(O o1 = 1 aTe [VS (= o PP 87

INStalled WED BIOWSEISvuiiiiiiiieeeeei e ettt e e e e e e e e e eaa e e e enens 87
Troubleshooting Password Dialogsccuuvviiuniiiiiiiiii e e 87

L0 0 B == o (= £ PP 87

TrAY L CON et 88

N oo 1 | OO 89

=T o T PSP 89

PN o] o=V = o] PSPPI 90
REFEIENCES ..ttt et e 91
AL EOIBS PaLBNE ..ot 92
F g1 oo 18 ot [o RSP SPPPTPPPIN 92

o] 111 o P 92

1S o] 11 o PP 92

S = YA C 1= 11 - o o 93
SOftware K&y GENEIALONiiiiiieiiieiii e e e et e e et e e e et e e et e e et eeaaeees 93

O 1 01 (= g I 0] =TSP 94
2T o (0 £ o [94

T 010 P 95

MAC CalCUILION ...eeeviiiee et e e et e et e e e et s e e e et e e e eeaeaeeeees 98

D. CSP and PKCSHLL CONfIgUITNG ..unvivieiiieeii e e e e e e e e e e e e e e e et e e eeenas 99
Platform dependenCIEScouuiiiiiei e 99
10001100101 1 o o TP 99

E. PIN-REBIE ISSUESvuiiiiiiiii ettt e et e et e e e e et e e e e e s 100
[NV 7 o 1 11 oo 100

PIN Caching MOGEccouiiiiiiii e e e e 100

PIN NON-Caching MOccuuiiiiieii e 100
Configuration DELAIISc.uiiiiiciii e e 101

Force Login BEfOre SIgNcouui i e e e 102

Vi

List of Figures

L. PrOQUCE SETUCKUIE «....eieeeit ettt ettt ettt e e ettt e ettt e et et n e et etb e e e eena e eeeens Xi
O N o] (o (1 PR 1
T L o1 o o= TSP UPPPTTR 2
1.3 REGISITAIION ...ttt ettt ettt et e 4
N0 1 0= 1 (o= [o o PP TPPPPTPPPIN 5
1.5, SOft TOKEN MIQraiOnceieiiieiiiii ettt ettt e e e e e e eeneas 6
11.1. Web Installation FIOWChAITccoouiiiiiiieiee e 72
15. 1. AdMINISIEtioN GUIccouuiiiiii e 81
15.2. IMPOIt SOt TOKENSviiieiii et et e e et e e e enaes 82
15.3. EXPOIt SOt TOKENSviiiieii ettt ettt et e e et e e e e ennes 83
15.4. Managing PIN COUESiiiiiiiiiiiii ettt 84
15.5. Searching fOr SOft TOKENc.uuiiiiiii e 85
15.6. Web Browser and Language SEtiNGSoveerrneieiii et e e e e e e 86
I5.7. AGVENCED ...t ettt 87
15.8. Caltd REAEIS ...ttt ettt 88
159, ABOUL ...t 89

vii

List of Examples

2.1. Example of an ActiveX control @CtiValionccceuuieiiiiiiieiiiiiee e e 8
2.2. Example of a script to activate the plug-in ... 8
2.3. Example of how to activate the Mozilla-based browser plug-in using the <OBJECT> tag
... 9
2.4. Example of ascript to activate the plug-inooov i 9
2.5. Example of Direct Activation using Internet Explorer (Windowsonly)cccceeeveeenee. 13
2.6. Example of Scripting using Internet Explorer (WINdows only)cooeevvvinieiiiiinieeiinnnnnn. 14
2.7. Example of Direct Activation using Mozilla-based browserscccoooeviiiiiiiiiiiienennnnn. 14
2.8. Example of Scripting using Mozilla-based brOWSEr'Scoovviiiiiiiiiiieiiiieeec e 15
3.1. Example of an ActiveX control aCtiVationc.uuveiiiiiieiiiiiee e 17
3.2. Example of a script to activate the plug-iNoooveiiiiii e 17
3.3. Example of how to activate the Mozilla-based browser plug-in using the <OBJECT> tag
... 18
3.4. Example of a script to activate the plug-in ..o 18
4.1. Example of an ActiveX control aCtiVationoveieuiiieieiieee e 25
4.2. Example of a script to activate the plug-inoviiiiiiiiii e 25
4.3. Example of how to activate the Mozilla-based browser plug-in using the <OBJECT> tag
... 26
4.4. Example of a script to activate the plug-inviiiiiiii e 26
5.1. Example of an ActiveX control aCtiVationc.uuoieiiiiiieiiiiieeee e e 33
5.2. Example of a script to activate the plug-in ... 33
5.3. Example of how to activate the Mozilla-based browsers plug-in using the <OBJECT> tag
... 34
5.4. Example of a script to activate the plug-in ... 34
5.5. Example of creating a certificate request (WINAOWS ONlY)c..evviiiiiiiiiiiiiee e 39
5.6. Example of storing the certificate response (WiNdOWS only)ccceviveiiiiinieiiiiineeieiie, 40
5.7. Example of creating a Certificate reqUESEc.uuuiiiiiiiiieeei e 40
5.8. Example of storing the certifiCate reSPONSEcccvvueiiiiiieeeii e 41
6.1. Example of an ActiveX control aCtivationc..uoieiiiiiiioiiiieeeei e 43
6.2. Example of a script to activate the plug-in ... 43
6.3. Example of how to activate the Mozilla-based browser plug-in using the <OBJECT> tag
... 44
6.4. Example of a script to activate the plug-in ... 44
7.1. Example of an ActiveX control aCtivationc.uuieriiiiioiiiiiee e 50
7.2. Example of a script to activate the plug-in ... 50
7.3. Example of how to activate the Mozilla-based browsers plug-in using the <OBJECT> tag
... 51
7.4. Example of a script to activate the plug-in: ... 51
7.5. Example of how to Detect and Activate the Plug-in in Internet Explorer (Windows only).... 52
7.6. Example of how to Detect and Activate the Plug-in in Mozilla-based broswers.................. 53
8.1. Example of an ActiveX control aCtiVationuuieiiiiiioiiiii e 54
8.2. Example of a script to activate the plug-iNooove i 54
8.3. Example of how to activate the Mozilla-based browsers plug-in using the <OBJECT> tag
... 55
8.4. Example of a script to activate the plug-iNoooveiiiiii e 55
8.5. Example of Direct Activation using Internet Explorer (Windows only):cccoeveevennnnne. 56
8.6. Example of Scripting using Internet Explorer (WINdows only)ccoeevviiieiiiiinieiiinnnnen. 56
8.7. Examples of Direct Activation using Mozilla-based browsersccoooveiiiiiiiiinn, 56
8.8. Example of Scripting using Mozilla-based broWSEr'Scoovviiiiiiiiiieiii e 57
8.9. Example Of @ VErSiON SNGc.uuiiiiiieeiiii et 58
I 0 TSSO 73
I 2SSO P TP 73
I TSSO 74
I TSSO 74

viii

Introduction

About this Document

There are three different platform oriented versions of Personal:
» Nexus Personal for the Windows platform

» Nexus Personal for the Mac OS X platform.

* Nexus Personal for the Linux Ubuntu platform.

As far as it has been possible, they have the same functionality. All three versions are described in
this manual.

However, some functionality is only available on the Windows platform. The following functions
belong to this category:

» Cryptographic Service Provider (CSP)
» ActiveX controls
* Internet Explorer

* CryptoAPI

Warning

Whenever these functions are mentioned throughout this manual, they will refer to the
Windows platform only even though this may not be stated explicitly in the text. Other
functions or options that only apply to one of the platformswill be highlighted with remarks
like “Windows only ”, “MAC OS X only” or “Linux only ".

Screendumps

Most screenshots in this manual are taken from Personal on one Windows platform. The layout may
look different on other Windows platformsand onthe Mac OS X and Linux platforms, but the message
conveyed by the images should be clear to all users.

Product Overview

Personal is a unique software product that brings support for certificate enrollment, digital signatures
and authentication to standard Internet software.

Personal includes the following set of functionality, which is described in the following section:
* “Web Browser Plug-Ins’

e “Cryptographic APIS’

+ “Administration”

* “NetDetacher”

Web Browser Plug-Ins

Personal provides a set of web browsers plug-ins, which are al implemented as ActiveX controls for
use with Internet Explorer and NPAPI plug-ins for Mozilla-based browsers.

Introduction

Personal WebSigner is a plug-in for digital signatures. The plug-in provides the possibility to
digitally sign transactions.

Personal Administration plug-in is used to manage tokens in Personal. It provides functions for
export, import and deletion of tokens as well as administration of PINSs,

Personal Registration Utility plug-in allows a user to connect to a Certification Authority to request
certificates and to store them on a software token.

Personal Version plug-in can be used to return theinstalled Personal componentsand their versions.
By using the Version plug-in, existing versions of Personal can be detected, in order to initiate a
possible upgrade installation.

Personal LogoutTokens plug-in logs out the current sessions to the tokens. Hence, it is possible to
control the SSL logout process at the browser from aweb server script.

Note

Plug-inisused asacommon term for ActiveX controlsaswell asNPAPI plug-insthroughout
this document.

Cryptographic APIs

Personal PK CS#11 isanimplementation of the RSA standard PK CS#11 that provides cryptographic
functions and token support. Personal PK CS#11 is optimized for use with SSL in Mozilla-based
browsers to access secure web sites.

Personal Cryptographic Service Provider (CSP). The CSP is registered with the operating system
and it allows use of tokens through Microsoft CryptoAPlI (MSCAPI). Personal CSP is optimized
for use with SSL in Internet Explorer to access secure web sites.

Administration

Personal is equipped with agraphical user interfacethat isused for the following administration tasks:

Import/export of soft tokens

Searching for disk drives with soft tokens
Introduction

Display and renaming of soft tokens

PIN code management

Web browser settings

Diagnostics

Language settings

NetDetacher

The purpose of NetDetacher isto control the SSL sessions and to detect and take appropriate actions
when atoken is removed. The token could be a smart card being removed from a card reader or a soft
token residing on amemory stick. If the private key on the token has been used by a browser during
an SSL session, that browser should be terminated.

Browsers normally cache the session keys and this could result in a security flaw unlessthe sessionis
terminated when the token isremoved. Asitisnot possibleto kill only the ongoing SSL session(s), the

Introduction

browser itself isterminated causing all its current sessionsto be terminated. NetDetacher is configured
in the Personal GUI. See reference [4] for further information.

Product Structure

Personal is made up of a set of binary modules related either within a process or inter-process. An
overview of the system is given in the following figure.

Figure 1. Product Structure

Binary modules and relations

! Brawser process |:| —— Exectibk

D — Shardobiect

lugin l'
Re bold —— Edenalkeree

wmal —— hEndl ke @

—/1’_' —— I EIpRCESE COmm A caton

i Application process i Application process

persons Pl

=gl

Personal Process

The Persona process, or Personal application, is the main executable in the client system. The
application contains various administrative features and provides al online functions (signing,
authentication, enrollment, etc.).

It contains the following components:

Personal The main executable.

Resources The collection of language and GUI resources contained in shared object
modules, e.g. .dll, .so and .dylib.

Token-API The internal APl module dynamically loaded to provide token and
cryptographic functions.

Card plug-ins A number of shared objectsimplementing support for specific cards and tokens.

Browser Process

The plug-in function interface is implemented as both an ActiveX object (Windows only) and a
NPAPI plug-in, loaded by the browser process, in order to support Internet Explorer and Mozilla-

Xi

Introduction

based browsers. This object is thin and mainly implements communication with the main Personal
process, where the actual online functions are implemented.

Third-Party Applications

In order to support Internet Explorer (Windows only) and Mozilla-based browsers that need to
accessthetoken or cryptographic functions during SSL handshake, Personal exposesthe APIsthrough
Personal PKCS#11 and Personal CSP (Windows only). Even other third-party applications make use
of these APIs.

GUI Branding

The “standard” GUI of Personal can be replaced with a branded version. In a branded version of
Personal it is possible to replace any dialogs, icons or text strings with other resources. Thisis done
with branding modules. How the branding is done on various platformsis described in “ Branding” on
page 16. For further information about how to brand Personal please contact the Personal distributor.

Environment

Seether el ease. t xt filefor information on supported platforms and web browsers in Personal .

What is New in this Version

For details on new or changed features in this version/release, see Rel ease. t xt .

Where to Find the Information

In additionto theintroductionin thischapter, amore detail ed description of the componentsin Personal
isfound in chapter “Functional Description Overview” on page 9.

Programmers and integrators will find descriptions of the various programming interfaces in the
following chapters:

* “WebSgner Plug-in”

* “Sgner2 Plug-in”

 “Authentication Plug-in”

» “Registration Utility Plug-in”

e “Administration Plug-in”

» “LogoutTokens Plug-in”

* “Version Plug-in”

* “Personal PKCS#11”

» “Personal CSP” (Windows only).

There are three separate chapters describing installation. Chapter “Installation on Windows’ on page
103, chapter “Installation on Macintosh” on page 107 and chapter “Installation on Linux” on page

109 contains information about how the installation works and what options are available to OEM
customers and integrators.

Xii

Introduction

Chapter “Administration” on page 111 contains information about the functions available via
the Personal GUI. The appendices present topics on various technical matters. Other sources of
information are listed in “References’ on page 6.

Release.txt

New functions and last minute information about Personal are described inther el ease. t xt file.

Help

Personal is provided with a help file.

How to Contact Us

Development, maintenance, and support of Personal are managed by Technology Nexus AB .

To provide feedback about our products or to suggest product enhancements, please send an e-mail
to<cont act @exussaf e. conp.

Xiii

Chapter 1. Functional Description
Overview

Architecture

The plug-ins are designed to be as small and reusable as possible. To achieve this, every plug-
in is implemented in a three-layered architecture. Instead of making the plug-ins perform specific
operations, the main task is to pass on data to the Personal application, where plug-in handlers carry
out the actual work.

Thethreelayers are:

» Browser specific (top)

 Plug-in specific (middle)

* Platform specific (bottom)

Figure “Plug-in Architecture ” shows an example of the layers in a signing and an enrollment
component. Thetop layer istheactual browser specificinterface, COM (Windowsonly) or NPAPI. The
twotiersmiddlelayer containsthe plug-in specific implementation, minimal to only handle messages.
The bottom layer is the platform specific inter-process communication implementation.

The actual signing functions are handled by the Signing plug-in handler in Personal application, and
in the same way the enrollment functions are handled by the Enrollment plug-in handler.

Figure 1.1. Architecture

WebSigner plug-in ReglUtil plug-in
COM MP AP oM MP AP
WehSigner WebSigner R eglLHil RegUHil
Zigner functions Enraliment functions
Signer meszage encodng and decoding Enrallment meszage encoding and decoding
IPC - Connedion [ayer IPC - Connedion layer
Fersonal application (Plug-in view)

IP < - Connedion handler

Plug-in handlers

Siggning Enrallm ent Acdmin Logout ersion

Functional Description Overview

A plug-in communicates with the Personal application using messages sent via inter-process
communication (IPC) calls.

On the Windows platform, the Personal application is implemented as a COM-server, and the plug-
ins as COM-clients.

On the Mac OS X platform, an Apple script server is used.

On the Linux Ubuntu platform, a Unix named pipeis used.

WebSigner

The WebSigner plug-in is used to create digitally signed messages in web browsers. The plug-in is
implemented asan ActiveX control for Internet Explorer (Windowsonly), and asaplug-in for Mozilla-
based browsers.

The user is prompted for his PIN code to enable access to the token. When access to the token is
enabled, WebSigner will compute the signature and send a PKCS #7-SignedData message to the
specified server application. The user will be notified by an error messageif the PIN codeisincorrect.

When WebSigner is activated to sign plain text, the data will be displayed in a signature window.
Press the View button to see the data to be signed in a separate application window. The application,
to which the MIME type of the data is associated will be launched, and the data to be signed can be
printed or saved to file.

Figure1.2. WebSigner

Nexus Personal - Sign

T o zign the document, select electronic identity token, enter PIM code and press
the buttor: "Sign'.

Sign Docurment

Textto bhe sighed

Certificate;

I

.@ MHon-Fepudiation (John Smith)
BIM [FIMNT]:

Sign] [Cancel]

When WebSigner is activated to sign afile, the signature window is the same aswhen signing plain
text. Again the data to be signed can be viewed, saved tofile, or printed by pressing the View button.
For more information, see chapter “ WebSigner Plug-in .

Functional Description Overview

Signer2

The Signer2 plug-in is used to create digitally signed messages or files in webbrowsers. The plug-
in is implemented as an ActiveX control for Internet Explorer(Windows only), and as a plug-in for
Mozilla-basedbrowsers.

When creating a digital signature, the user is prompted for his PIN code inorder to enable access to
the token. When access to the token is enabled,Signer2 will compute the signature in XML Digital
Signature format. Theresulting signature can be sent to aweb server for verification.

The Signer2 plug-in is designed to prevent so called “Man-In-The-Middle” attacks. A DNS lookup
is always performed onthe URL from which the plugin is called. The resulting IP addressis included
inthe signature.

For more information, see chapter “ Signer2 Plug-in”.

Authentication

The Authentication plug-in can be used for application level authentication toweb servers. It is an
alternativeto client side SSL authentication provided inweb browsers. The plug-inisimplemented as
an ActiveX control for InternetExplorer (Windows only), and as a plug-in for Mozilla-basedbrowsers.

When creating adigital signature for authentication, the user is prompted forhis PIN code in order to
enable access to the token. When access to the token isenabled, Authentication plug-in will compute
the signature in XML DigitalSignature format. The resulting signature can be sent to a web server
forverification. If the signature is successfully verified, the user isauthenticated to the web server.

The Authentication plug-in is designed to prevent so called “Man-In-The-Middle” attacks. A DNS
lookup is always performed on the URL from which the plug-in iscalled. The resulting 1P address
is included in the signature. TheAuthentication plug-in provides a mechanism for token removal
detection. It ispossible to register an URL to which Personal should post amessageif the userremoves
his/her token within a defined time frame. For more information, see chapter “ Authentication Plug-

n-.

Registration Utility

The Registration Utility makes it possible for a user to connect to aCertification Authority, such as
Nexus Certificate Manager, to enroll certificates and store them on atoken. The plug-inisimplemented
as an ActiveXcontrol for Internet Explorer (Windows only) and as aplug-in for Mozilla-based
browsers.

If asoftwaretoken or key pairsarenot available, they will be created. Inaddition to token and certificate
information, Registration Utility supportsPIN policies to be set for soft tokens. These policies are
enforced when theuser istrying to change the PIN codes. In addition, one-time passwords can beused,
which are sent to the Certification Authority for validation andauthorization during the enrollment
process.

The Registration Utility can be launched with a GUI, in which token name and PINcode are entered
by the user, or in silent mode, i.e. without interaction withthe user.

Functional Description Overview

Figure 1.3. Registration

Hexus Personal - Registration

Regiztration

Electronic identity token name:
FIM for toker: :

Confim FIN: |

2k,] [Cancel

For more information see chapter “ Registration Utility Plug-in”.

Administration Plug-in

The Administration plug-in is used to manage tokens and the token PINs via a webbrowser. The
Administration plug-in is implemented as an ActiveX control forlnternet Explorer (Windows only),
and as aplug-in for Mozilla-based browsers.

The plug-in invokes the various wizards available in Personal. For moredetails, see the Help filein
Personal.

Version Plug-in

In order to retrieve information about the installed components, thereis avVersion plug-inin Personal.
The plug-inisimplemented as an ActiveX controlfor Internet Explorer (Windows only) and as aplug-
in forMozillabased browsers.

TheVersion plug-inreturnstheinstalled Personal componentsand their resp.versions. The output from
theVersion plug-inisaformatted string with thedetail s of theinstalled components. The version string
can either be posted toa web application or returned by a method for further processing in a script.

For more information see chapter “ Version Plug-in .

LogoutTokens Plug-in

The LogoutTokens plug-in allows the web server to log out a user from the tokenonce the session has
been completed. The plug-in is implemented as an ActiveXcontrol for Internet Explorer (Windows
only) and as aplug-in for Mozilla-based browsers.

After the user hasfinished the session and logs out from the current web site,the web server invalidates
the session key by clearing it at the server side. Thelog out from the server prevents someone else
from creating a new sessionwithout entering the PIN again.

For more information see chapter “ LogoutTokens Plug-in .

Cryptographic APIs

Personal supports the cryptographic APIs PKCS #11 and Microsoft CryptoAPI(Windows only). Both
APIs rely upon the cryptographicmechanisms and tokens provided by the Token API. Personal CSP
and Personal PK CS#11 areimplemented in per sonal . dl | .

Functional Description Overview

Microsoft CSP
Note

This section applies to Windows only.

Personal includes a Microsoft CSP of type PROV_RSA_FULL. Hence, thetokens supported by
Personal Token-API are exposed in the MicrosoftCryptoAPl. The certificates in Personal are
imported to, and removed from,Microsoft Certificate Store by a process continuously running in the
per sonal . exe application.

Whenever necessary, the CSP will present a PIN dialog window, for input ofthe PIN code needed to
access the private keys in the token. This will happene.g. when accessing a secure web server that
requests client authentication.

Figure 1.4. Authentication

Nexus Personal - Authenticate

Meruz Personal - Authenticate

Enter PIM for Electronic 1D [PIM1].

xxxﬂ

FIN:

| Werify my identity Cancel

For more information see chapter “Personal CSP”.

PKCS#11

Personal includes a PKCS#11 compliant library. By using this library, third party applications can
interact with the cryptographic functions and tokens in the underlying Personal Token-API.

For more information see chapter “ Personal PKCS#11” .

Installation and Updating

On Windows, Personal is installed and updated over the web. In order to achieve this, Personal
installation fileis contained in asigned CAB file used for downloading and installing through Internet
Explorer, and an XPI file for Mozilla-based browser installations. These files are located on the web
server, and when a web browser accesses the site, Personal isinstalled if it is not already present on
the client.

By calling the Version plug-in from a web application script, the installed version will be detected,
and if it is outdated, the web browser can be redirected to a web site where an updated CAB or XPI
fileislocated.

For traditional installation scenarios and for web browsers that do not allow CAB/XPI files to be
executed, the per sonal set up. exe fileisaso provided.

The Personal installation program is a dedicated application, called persinst.exe, containing all the
necessary files and the information needed to install them.

For more information see chapter “ Installation on Windows” .

Functional Description Overview

On Mac OS X, the application name is Personal.app. When the user starts Personal for the first time,
aninstallation of the different components takes place. For more information see chapter “Installation
on Macintosh ”.

On Linux, Personal is delivered as a compressed tar file. To install Personal the user unpacks the tar
file and runs an installation script present in the package. When Personal is installed it is accessible
from the Applications menu on the desktop. For moreinformation see chapter “Installationon Linux ”.

Soft Token Migration

To alow import of soft tokens configured for iD2 Personal 2.x and SmartTrust Personal 3.x , soft
token migration is available (Windows only).

Migration of tokens on the Macintosh platform is available from Personal 3.5 and 3.6 (MAC OS X
only).

The migration processis carried out by awizard. The wizard is either launched automatically thefirst
time Personal is used or any other time from the Migrate command in the File menu.

The soft tokens to be migrated are identified by the mount pointsiniD2 Personal 2.x and SmartTrust
Personal 3.x configuration files. The user gets the possibility to select the tokens to migrate and to
enter the PIN codes for these tokens.

Figure 1.5. Soft Token Migration

Mexus Personal - Migration Wizard

Access Control
E lectronic identity tokens are protected by a PIN code.

Enter your PIM, if you want ta migrate this token.

Title: Qldtoken
Subject: Sara Svenszon
lzzuer Chd Bootstrap Ca

PIN: M 1

When the soft tokens are stored on the same drive as Personal isinstalled, the tokens are del eted upon
completed migration. When the soft tokens are stored on another drive, e.g. on afloppy, the soft token
remains on that disk.

Functional Description Overview

Integration with Standard Products

Personal is a software that integrates with various standard products.
Integration with Internet Explorer
Note

This section applies to the Windows platform only.

Personal includes a CSP, which adds token support to Microsoft Internet Explorer. This integration
automatically takes place during the installation.

Integration with Mozilla-Based Browsers

Personal includes a PKCS#11 module, which adds token support to Mozilla-based browsers. This
integration automatically takes place during the installation.

Branding

The branding possibility is platform dependant.

Branding on Windows platforms

On the Windows platforms, the following modules may be branded:
* A language neutral DLL, branding.dll, which contains al icons and bitmaps.

 Language dependant DL Ls, which contain al language specific resources such as dialogs and text
strings.

Branding on Mac OS X

Branding and localizing Personal on Mac OS X relies on the standard Mac OS X localization and
branding features part of Mac OS X Bundles.

In Mac OS X branding and localization can be done on a binary version of the product and does not
require recompilation of the product from it source code. Branding and localization of the Personal
application is done in three specfic steps.

1. Changing string resources for localized text in the User Interface.
2. Replacing images diplayed in the User Interface.

3. Changing NIB files for moving or changing layout for components.

Branding on Linux

Branding of the user interface is not supported on Linux.

Card Reader Support

All smart card communication is done through PC/SC interface. The new standard PC/SC 2.01 Part
10 is supported. That means that PIN-Pad readers are supported through the PC/SC interface in a
standardized way.

Chapter 2. WebSigner Plug-in

Introduction

The WebSigner plug-in is used to create digitally signed messages in web browsers.

Plug-in Activation

The following <OBJECT> tags are used to activate the plug-in in aweb browser:

ClassiD 6969E7D5-223A-4982-9B79-CCAFAC2D5ESE (Windows
only)

ProglD Nexus.SignerCtl (Windows only)

Activation MIME type application/x-personal-signer

Internet Explorer
Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX contral. It is activated using the
<OBJECT> tag, supplying none, some or all parameters using the <PARAM> tag.

Example 2.1. Example of an ActiveX control activation

<OBJECT | D="Si gner" CLASSI D="CLSI D: 6969E7D5- 223A- 4982- 9B79- CCAFAC2D5E5E" >
<PARAM NAME=' Char act er Encodi ng' VALUE=' UTF8' >
<PARAM NAME=' Dat aToBeSi gned' VALUE=' Si gn%20t hi s."' >
<PARAM NAME=' Post URL' VALUE=' https://server.com >

</ OBJECT>

Dueto the Eolas Patent, chapter “ Appendix A — Eolas Patent ” supplies more information on how to
activate aplug-in. If the WebSigner plug-in is started using direct activation, we recommend solution
2, while solution 1 is preferred if the plug-in is scripted.

At thisstage, it isnot necessary to set any parameters asthey can be set later using the script functions.

It is also possible for the web server to use scripting to silently detect if the plug-in is installed in
the client.

Example 2.2. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">
try {
var xQbj = new ActiveXbj ect (" Nexus. SignerCtl|");
if(xj) {
docunent. witeln("QObject installed.");

}
} catch (e) {
document. witel n("Object not installed.");

}
</ SCRI PT>

WebSigner Plug-in

It is recommended that the <OBJECT> tag is used to create the object to be used for signing. It is
possibleto usethe plug-in object created using new Act i veXCbj ect (Nexus. Si gner Ct 1) but
this object will not be initialized correctly by Internet Explorer. In other words, the browser functions
needed for the signing operation can not be used i.e. the plug-in will not be able to post the signature
by itself. Furthermore, Internet Explorer will not be set as a parent window to the signing window.

Mozilla-Based Browsers

In Mozilla-based browsers, the plug-in isimplemented using the NPAPI. It can be activated using the
<OBJECT> tag by supplying some or all parameters using the <PARAM> tag. It must be noted that it
isdone in adifferent way than for Internet Explorer. The ClassID is not used to identify the plug-in,
but rather the activation MIME type as defined above.

Example 2.3. Example of how to activate the Mozilla-based browser plug-in
using the <OBJECT> tag

<OBJECT id="signer" type="application/x-personal -signer">
<PARAM NAME=' Char act er Encodi ng' VALUE=' UTF8' >
<PARAM NAME=' Dat aToBeSi gned' VALUE='Si gn%20t his.' >
<PARAM NAME=' Post URL' VALUE=' https://server.com >

</ OBJECT>

Scripting can be used by the web server to decide whether the plug-in is installed in the browser by
checking if the activation MIME typeis registered.

Example 2.4. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">
i f (navi gator. plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m meTypes &&
navi gat or. mi neTypes["appl i cati on/ x- personal signer"]) {
if (navigator
. m meTypes["appl i cati on/ x- personal - si gner"]. enabl edPl ugi n) {
docunent.witeln("Plugin installed");

}
}
}

}
</ SCRI PT>

Parameters

Thefollowing parameters are used in the WebSigner interface. They are case sensitive if nothing else
is stated explicitly.

Parameter Explanation
Mime- Theonly supported MIME typeist ext / pl ai n of thedatato
type be signed. This type effects which application program to start

if the View button in the WebSigner window isclicked. MIME
typeswere originally specified in RFC 1341 but improvements
have been made in other documents like RFC 1521 and RFC

WebSigner Plug-in

CharacterEncoding

Format

HashAl g

Fi | enane

W ndowNane

Dat aToBeSi gned

Post URL

Post Par ans

Si gnRet ur nName

1522. If this parameter is not present, it defaults to t ext /
pl ai n.

Setsthe character encoding of the datato be signed, if relevant
for the chosen MIME type. The only supported character
encodings are UTF8 and pl at f or m where pl at f or mis
the platform's default character encoding. The parameter is
optional and if no character encoding is given, default will be
pl at f or m For Mac OS X, pl at f or mwill be interpreted as
SO 8859-1. UTF8 is recommended.

Definestheformat of the output data. Currently, only the PKCS
#7 signed-data content type format is supported. After creation,
the signature will be URL-encoded for sending as aweb form
element. The value PKCS7 SI GNED specifies this format.

For full backwards compatibility —with versions
of Personal prior to 3.0, the seconds
may be removed by adding _NoSeconds to
the Format parameter: PKCS7SI GNED _NoSeconds,
PKCS7SI GNED_Att ached NoSeconds, or
PKCS7SI GNED _Det ached NoSeconds. We dso
recommend that you use PKCS7, however, "PKCS#7" can
still be used for backwards compatibility. As an option,
the signed data may be either included in the resulting
signature, by specifying PKCS7SI GNED At t ached, or
excluded, by specifying PKCS7SI GNED_Det ached. The
parameter is optional and if no format is given, default will be
PKCS7SI GNED_At t ached.

Optional parameter specifying which hash agorithms
to use in signatures. Possible values are MD5, SHAL,
SHA224, SHA256, SHA384, SHA512, Rl PEMD128, and
Rl PEMD160. Default is SHAL.

An optional file name to be used as default in the Save dialog
when the user presses the Save... button in the WebSigner
dialog box.

If present, this parameter specifies the name of the window
or frame used to display the server response to the HTML
post from WebSigner. WindowName is optional. If omitted,
it defaults to the window (or frame), that WebSigner was
activated in, i.e._sel f.

Used asthedatato be signed when the dataisembedded into the
HTML page. The datato be signed must be sent URL -encoded.
WebSigner will decode the message, present it in the signature
dialog box and sign the decoded message.

Definesthe URL to which WebSigner will post the signed data.
If this parameter is not defined, WebSigner will sign the data
and make it available for later retrieval using the GetSignature
script function, but it will not post the signature.

If PostURL is set then the URL -encoded string with parameters
is posted back.

Defines the name of the form field to contain the signature
posted by WebSigner. SignReturnName is optional and if not
present the default is Si gnedDat a.

10

WebSigner Plug-in

Dat aRet ur nNane

Ver si onRet ur nName

| ssuers

Subj ect s

Vi ewDat a

Base64

I ncl udeCacCert

I ncl udeRoot CaCert

Defines the name of the form field to contain the unsigned
data posted by WebSigner. The original data will be returned.
DataReturnNameisoptional and if not present, WebSigner will
not post the unsigned data.

Returnsthe version of Personal when posting the signature. See
DataReturnName and SignReturnName.

Defines the filter criteria based on Issuers used to reduce
the user's certificate choices when signing. Specific certificate
attribute search strings can be specified, separated by "," or ;"
where commais interpreted as logical AND and semicolon as
logical OR. The following X.500 attribute abbreviations are
available: cn, g,s,t,ou,0,email ,i,sn,street,|,st,
¢, d,anddc . In addition, OIDs can be used.

Regular expressions using the wildcards * and ? can aso
be used. * matches an arbitrary number of characters. ?
matches exactly one character. To match a string containing an
asterisk or questionmark, the wildcard must be escaped using a
backslash \ . So to match an asterisk simply type\ *.

Example 1: The search string cn=Qur CA* will filter out all
certificates issued by CAs with common name starting with
Qur CA

Example 2: 2.5.4.6=SE will filter out al Swedish
certificates.

Defines the filter criteria based on Subjects used to reduce the
user's certificate choices when signing. See I ssuers.

Switches between two default signature dialog boxes handled
by WebSigner. Thevaluef al se causes\WebSigner to activate
a small dialog box where the data to be signed is optionally
viewed in a separate viewer application, which depends on the
MIME type parameter. The valuet r ue causes WebSigner to
activate alarger dialog box, which, in addition to the possibility
to view the data separately, also displaysthe datain atext area
within the dialog box.

Note

The data may be incorrectly displayed in the text area
if it containscertain control characterssuch asthe Null
character. The default valueist r ue.

If the signature is to be Base64-encoded before it is URL-
encoded, this parameter must be set to true. Baseb4 is
optional and case insensitive. If omitted or set to f al se, no
Base64-encoding will be performed.

Possible values aret r ue and f al se (default is false). Will
include the CA certificate chain (except the rootCA) in the
signature, if available. IncludeCaCert is case insensitive.

Possiblevaluesaret r ue andf al se (defaultisf al se). Will
include the Root CA certificate of the certificate chain in the
signature, if available. IncludeRootCaCert is case insensitive.

11

WebSigner Plug-in

UseBr andi ng

Scripting

An optional parameter that specifies if WebSigner should be
branded or not. If the parameter is set to t r ue, WebSigner
GUI will be branded if Persona installation is branded. If the
parameter isf al se, WebSigner GUI will not be branded, even
if theinstallation is branded. If this parameter is not present, it
defaultsto true.

The WebSigner profile may also be scripted using JavaScript or VB Script.

Thefollowing functions are available in Per sonal

Set <par anet er

Si gn

CGet Ver si on

Get Si gnature

GetErrorString

name>

i nt Set<paraneter nane>(val ue);
String val ue;
Parameters are set using the following:

The only exception is MIME type, which uses SetMimeType.
The return value will always be 0.

int Sign();

int Sign() pops up the signature dialog box and signs
the data buffer. If i nt Si gn() is successful, it returns 0
otherwise - 1 isreturned.

If the PostURL parameter is set, the plug-in will post the
signature by itself. The signature can also be retrieved with
Get Si gnat ure(), independent of it being posted. The
retrieved signature can be posted using script.

String GetVersion();

String GetVersion() returns the current WebSigner
plug-in version number.

Note

Toretrievethe Personal version, usetheVersion plug-
in.

String GetSignature();

If Si gn() issuccessful (r et ur n 0) thenthesignaturewill be
available by using the call Get Si gnat ur e() . The signature
is aways URL-encoded. If base64=t r ue, then base64 is
used before being URL -encoded.

String GetErrorString();
If Si gn() is not successful (return < 0) then an error string

will beavailable by usingthecall Get Error Stri ng() . The
string isanull terminated ASCII string describing the error.

12

WebSigner Plug-in

Usage and GUI

When WebSigner is activated, either through direct activation or by using the Sign() script function,
it will display the signature dialog, allowing the user to see what he or she is about to sign. The user
chooses the signing certificate and enters his or her PIN and clicks the Sign button.

Note

Itis possibleto filter the certificates made selectable for signing. See parameters Issuers and
Subjects explained in “ Parameters’ and the examplesin“ Sample Web Pages’.

If the datato be signed is plain text, it will be shown according to the appropriate character encoding
using afixed width font, if ViewData=true.

Branding of the WebSigner GUI ispossible. See“ Branding”.

Sample Web Pages

This section includes some basi ¢ sampl e pages showing how to activatethe plug-in. For more extensive
samples, see the sample pages package.

Example 2.5. Example of Direct Activation using Internet Explorer (Windows
only)

<HTM_>
<OBJECT | D="Si gner" CLASSI D="CLSI D: 6969E7D5- 223A- 4982- 9B79- CCAFAC2D5E5E" >
<PARAM NAME=' M ne-type' VALUE='text/plain' >
<PARAM NAME=' Char act er Encodi ng' VALUE=' UTF8' >
<PARAM NAME=' For mat' VALUE=' PKCS7S| GNED At t ached' >
<PARAM NAME=' Fi | eNanme' VALUE='text _tbs.txt'>
<PARAM NAME=' W ndowNane' VALUE='_sel f' >
<PARAM NAME=' Dat aToBeSi gned' VALUE='Si gn%20t hi s: %20%UC3%ASUC3YA4AC3YB6' >
<PARAM NAME=' Post URL' VALUE=' http://server.coni post'>
<PARAM NAME=' Post Par ans' VALUE=' user| D=42&si gnl D=4711" >
<PARAM NAME=' Si gnRet ur nName' VALUE=' Si gnedDat a' >
<PARAM NAME=' Ver si onRet ur nName' VALUE=' Versi on' >
<PARAM NAME=' | ssuers' VALUE=' cn=Qur CA, c=SE; cn=Your CA, c=FI"'>
<PARAM NAME=' Subj ects' VALUE=' cn=Test, c=SE' >
<PARAM NAME=' Vi ewDat a' VALUE='true' >
<PARAM NAME=' Base64' VALUE='fal se' >
<PARAM NAME=' | ncl udeCaCert' VALUE='true'>
<PARAM NAME=' | ncl udeRoot CaCert' VALUE='fal se' >
</ OBJECT>
</ HTM.>

13

WebSigner Plug-in

Example 2.6. Example of Scripting using Internet Explorer (Windows only)

<HTML>
<SCRI PT | anguage="JavaScri pt">
try {
var xQbj = new ActiveXObj ect ("Nexus. SignerCtl");
if(xj) {
docunent.witeln("Object installed.");
} catch (e) {

document.witeln("Ooject not installed.");

</ SCRI PT>

<OBJECT | D=
</ OBJECT>

<SCRI PT |

si gner.

si gner.

si gner.

si gner.

si gner.

si gner.

si gner.

si gner.

si gner.

si gner.

si gner.

si gner.

si gner.

si gner.

si gner.

"signer" CLASSI D="CLSI D: 6969E7D5- 223A- 4982- 9B79- CCAFAC2D5ESE" >

anguage="JavaScri pt">

Set M neType('text/plain');

Set Char act er Encodi ng(' platform);
Set For mat (' PKCS7SI GNED_At t ached') ;
Set Fil eNanme('text _ths.txt");

Set W ndowNane(' _sel f');

Set Dat aToBeSi gned(' Sign this."');
Set Si gnRet ur nNarme(' Si gnedDat a') ;
Set Dat aRet ur nName(' Unsi gnedData') ;
Set Ver si onRet ur nNane(' Version');
Set |l ssuers('"');

Set Subj ects('");

Set Vi ewDat a('true');

Set Base64('true');

Set I ncl udeCaCert ('true');

Set I ncl udeRoot CaCert (' true');

if (signer.Sign() == 0) {
document. writel n(signer. GetSignature());
} else {

document. witel n(signer.GetErrorString());

</ SCRI PT>
</ HTML>

Example 2.7. Example of Direct Activation using Mozilla-based browsers

<HTM_>
<OBJECT |
<PARAM
<PARAM
<PARAM
<PARAM
<PARAM
<PARAM
<PARAM
<PARAM
<PARAM
<PARAM
<PARAM
<PARAM
<PARAM
<PARAM
<PARAM
<PARAM
</ OBJECT>
</ HTML>

D="si gner" type="application/x-personal -si gner">

NAVE=' M nme-type' VALUE='text/plain' >
NAMVE=' Char act er Encodi ng' VALUE=' UTF8' >

NAME=' For mat ' VALUE=' PKCS7SI GNED_At t ached' >

NAMVE=' Fi | eNane' VALUE='text_tbhs.txt'>
NAME=" W ndowNane' VALUE='_sel f'>

NAME=' Dat aToBeSi gned' VALUE=' Si gn%20t hi s: %20%UC3YASAUCIYALAC3IYB6" >
NAMVE=' Post URL' VALUE=' http://server.com post' >

NAVE=' Post Par ans' VALUE=' user | D=42&si gnl D=4711" >

NAMVE=' Si gnRet ur nNane' VALUE=' Si gnedDat a' >

NAME=' Ver si onRet ur nName' VALUE=' Ver si on' >

NAME=' | ssuers' VALUE=' cn=Qur CA, c=SE; cn=Your CA c=FI'>

NAMVE=' Subj ects' VALUE=' chn=Test, c=SE' >
NAME=' Vi ewDat a' VALUE='true' >

NAVE=' Base64' VALUE='fal se' >

NAME=" | ncl udeCaCert' VALUE='true' >

NAME=' | ncl udeRoot CaCert' VALUE=' fal se' >

14

WebSigner Plug-in

Example 2.8. Example of Scripting using Mozilla-based browsers

<HTM_>
<SCRI PT | anguage="JavaScri pt">
i f(navi gator. plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m neTypes &&
navi gat or. mi neTypes["appl i cati on/ x- personal signer"]) {
i f (navigator
. m meTypes["appl i cati on/ x- personal - si gner"]. enabl edPl ugi n) {
docurment.writeln("Plugin installed");
}
}
}

}
</ SCRI PT>
<OBJECT id="signerld" type="application/x-personal -signer" |ength=0 hei ght =0>
</ OBJECT>
<SCRI PT | anguage="JavaScri pt">
var signer = docunent.getEl enent Byl d('signerlid');
signer. Set M meType('text/plain');
si gner. Set Char act er Encodi ng(' pl atform);
si gner. Set For mat (' PKCS7SI GNED_At t ached') ;
signer. SetFil eName('text_tbs.txt');
si gner. Set W ndowNanme(' _self');
si gner. Set Dat aToBeSi gned(' Sign this."');
si gner. Set Si gnRet ur nNane(' Si gnedData');
si gner. Set Dat aRet ur nNane(' Unsi gnedData') ;
si gner. Set Ver si onRet ur nNarme(' Version');
signer. Setlssuers(' cn=Qur CA, c=SE; cn=Your CA, c=FIl");
si gner. Set Subj ect s(' cn=Test, c=SE');
signer. SetViewData('true');
si gner. Set Base64('true');
signer. SetlncludeCaCert('true');
si gner. Set | ncl udeRoot CaCert ('true');
if (signer.Sign() == 0) {
docurent .. writel n(signer. GetSignature())
} else {
document.writeln(signer.GetErrorString());
}
</ SCRI PT>
</ HTM.>

Digital Signature Format

This section defines the format of the returned signature. The signature is formatted according to
"PKCS #7 v1.5 RSA Cryptographic Message Syntax Standard” and can be Base64 -encoded for
transport.

The encrypted digest within the PKCS #7 object is encrypted according to RSAES-PKCS-v1 5
(Reference PKCS #1 v2.0).

The PKCS #7 (v1.5) object is a ContentInfo object with content of type SignedData identified by the
signedData OID. Thefields of the SignedData object have the following values:

Field Value
Ver si on 1
di gest Al gori t hrrs SHA-1 object identifier

content | nfo.content Type PKCS#7 Dataobject identifier

cont ent | nf 0. cont ent The signed text is included by default. The default behavior
can be overridden by choosing a different value for the Format

15

WebSigner Plug-in

parameter. [10} PKCS7SI GNED _Attached ensures
that data is present, while PKCS7S|I GNED Det ached
ensures that datais not present in the signature. The parameter
is optiona and if no format is given, default will be
PKCS7SI GNED_At t ached.

Note

We recommend that you use PKCS7 but "PKCSH7"
can till be used for backwards compatibility.

certificates The signing certificate isincluded by default. If the parameters
IncludeCaCert and IncludeRootCaCert are set to true, then the
entire certificate chain up to theroot isincluded (if found).

Certificates may appear in any order.

Crls Not present.
Si gner I nfo.version 1
Si gner I nf o. The issuer and serial number of the identity certificate.

i ssuer AndSeri al Nunber

Si gner I nf o. SHA-1 object identifier
di gest Al gorithm

Si gner | nf 0. Three attributes are present:

aut henti catedAttributes
A PKCS #9 content type attribute, the value of which is the

same as SignData's contentlnfo.contentType. In this case this
isthe PKCS #7 Data object identifier.

A PKCS #9 message digest attribute, the value of which isthe
message digest of the content.

A PKCS #9 signing time attribute, the value of which is the
time at which the object was signed.

Note

For full backwards compatibility with versions
of Personal prior to 3.0, the seconds may be
removed by adding _NoSeconds to the Format
parameter, (i.e. PKCS7SI GNED_NoSeconds,
PKCS7SI GNED_At t ached_NoSeconds, or
PKCS7SI GNED _Det ached_NoSeconds). We
also recommend that you use PKCS7, however,
"PKCSH7" can dill be used for backwards

compatibility.
Si gner | nf o. PK CS#1 rsaEncryption object identifier
di gest Encrypti onAl gorithm
Si gner | nf 0. The result of encrypting the message digest (BERencoded
encrypt edDi gest Digestinfo) of the complete DER-encoding of the Attributes

value contained in the authenticatedAttributes field with the
signer's private key. See Reference PK CS#7, Section 9.3, with
the clarifying footnote. The data is encrypted according to
RSAESPKCS-v1 5 (Reference PKCS #1 v2.0).

16

Chapter 3. Signer2 Plug-in

Introduction

The Signer2 plug-in is used to digitally sign messages or files in web browsers. It creates an XML
signature in accordance with the BankID specification (in reference [8]).

Plug-in Activation

The following <OBJECT> tags are used to activate the plug-in in aweb browser:

ClassiD FB25B6FD-2119-4CEF-A915-A056184C565E (Windows
only)

ProglD Nexus.SignerV2Ctl (Windows only)

Activation MIME type application/x-personal -signer2

Internet Explorer
Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX control. It is activated using the
<OBJECT> tag. The parameters are set later using a scripting language.

Example 3.1. Example of an ActiveX control activation

<OBJECT | D="si gner"
CLASS| D="CLSI D: FB25B6FD- 2119- 4CEF- A915- A056184C565E" >
</ OBJECT>

It is also possible for the web server to use a scripting language to silently detect if the plug-in is
installed in the client.

Example 3.2. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">

try {
var xQbj = new ActiveXbj ect (" Nexus. Si gnerV2Ct1");

if(xj) {
docunent.witeln("Object installed.");

}
} catch (e) {
docunent.witeln("Ooject not installed.");

}
</ SCRI PT>

Mozilla-Based Browsers

In Mozilla-based browsers, the plug-in is implemented using the NPAPI. It can be activated using
the <OBJECT> tag. It must be noted that it is done in a different way than for Internet Explorer. The
ClassID is not used to identify the plug-in, but rather the activation MIME type as defined above.

17

Signer2 Plug-in

Example 3.3. Example of how to activate the Mozilla-based browser plug-in
using the <OBJECT> tag

<OBJECT id="signer" type="application/x-personal -si gner2">
</ OBJECT>

Scripting can be used by the web server to decide whether the plug-in is installed in the browser by
checking if the activation MIME typeis registered.

Example 3.4. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">
if (navigator.plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m meTypes &&
navi gat or. mi meTypes["appl i cati on/ x- per sonal si gner2"]) {
if (navigator
. m meTypes["appl i cati on/ x- per sonal - si gner2"] . enabl edPl ugi n) {
document.witeln("Plugin installed");

}
}
}

}
</ SCRI PT>

Parameters

This section describes which parameters are defined for the Signer2 plug-in. The parameters can be
set by calling the function SetParam and retrieved by calling GetParam. To reset al parameters of the
plug-in, call the function Reset.

The parameters| ssuer s, Subj ect s and Pol i cys when combined use the following heuristic.
e If I ssuers and Subj ect s are set, logical AND is used to filter the result.

» If I ssuers andPol i cys areset, logical OR isused to filter the result.

» If Subj ect s and Pol i cys are set, logical AND is used to filter the result.

« If al three are set, the following apply: (I ssuer s AND Subj ect s) ORPol i cys

They are case sensitive if nothing elseis stated explicitly.

Parameter Explanation

| ssuers Defines the filter criteria based on Issuers used to reduce
the user's certificate choices when doing a signing operation.
Specific certificate attribute search strings can be specified,
separated by, or; wherecommaisinterpreted aslogical AND
and semicolon as logical OR. The following X.500 attribute
abbreviationsare available: cn, g,s,t ,ou,0,emai | ,i,sn,
street,l,st,c,d,anddc. Inaddition, OIDs can be used.

Regular expressions using the wildcards *' and ? can also
be used. * matches an arbitrary number of characters. ?
matches exactly one character. To match a string containing an

18

Signer2 Plug-in

Subj ect s

Pol i cys

Text ToBeSi gned

Text Char act er Encodi ng

Nonce

ServerTi ne

NonVi si bl eDat a

Ref Di gest Met hod

Si gnMet hod

Onl yAccept MRU

Si gnature

Ver si on

SupportedFi | eTypes

asterisk or questionmark, the wildcard must be escaped using a
backslash \ . So to match an asterisk simply type\ *.

Example 1: The search string cn=CQur CA* will filter out all
certificates issued by CAs with common name starting with
Qur CA

Example 2: 2.5.4.6=SE will filter out all Swedish
certificates.

Defines the filter criteria based on Subjects used to reduce the
user's certificate choices when doing a signing operation. See
Issuers.

Defines the filter criteria based on Policys used to reduce
the user's certificate choices when doing a signing operation.
See Issuers. Note: Logical AND is not applicable for Policys.
Regular expressions are not applicable for Policys.

Mandatory. The text to be shown to the user. The value should
be Base64-encoded. Character encoding of the text is defined
by parameter TextCharacterEncoding.

Optional. The character encoding of the (shown) text to be
signed. Value could be | SO 8859- 1 or UTF- 8. Default is
UTF- 8.

Mandatory. Limited UTF-8 encoded string. The value should
be Base64-encoded.

Optional. May contain atimestamp for the reference/tracability
by the server. The value must specify the number of seconds
from midnight January 1st 1970, UTC.

Optional. Size limited amount of data. Parameter value should
be Base64-encoded. Max 5Mb (after Base64-encoding).

Optional. Digest algorithm used when creating the references
in the XML signature. The value may be SHA1 or SHA256.
Default is SHA256.

Optional. Encryption method for the signature. Today only
RSA- SHA1 is supported.

An optional parameter that specifiesif only the last used token
(in Authentication/Signer2 plug-ins) should be available for
signing. If set, it overrides all other filter parameters. If this
parameter is not present, it defaults to false.

Only available through the function GetParam. Returns the
signature created. The result is Base64-encoded.

Only available through the function GetParam. Returns current
version of the Signer2 plug-in.

Only available through the function GetParam. Returns the
supported file types and a flag indicating if there is reader
software installed that can be used to view thefile.

Example 1: t xt =1&pdf =0& The example above is returned
from aversion of Personal that supports both .txt and .pdf, but
thereis no software installed for viewing .pdf.

19

Signer2 Plug-in

Fi | eCont ent

Fi | eNane

Scripting

Example 2: t xt =1& This example is returned from a version
of BISP that only supports .txt and software is installed for
viewing files of that type.

Mandatory when signing files. The parameter value should be
Base64 encoded. The amount of data may not exceed 10MB or
an error will be returned.

Mandatory when signing files. The parameter value should be
Base64 encoded. The filename may not exceed 255 characters
and should be UTF-8 before Base64 encoding.

Following functions ar e exported from the signature interface

Set Par am

CGet Par am

Per f or mActi on

Cet Last Error

Reset

i nt Set Param(par anType, paranVal ue);

String paranfype;
String paranval ue;

Returns Integer Errorcode.

Function SetParam can be used to set parameters of the plug-in.
string GetParan(paranilype);

String paranfype;

Returns String paramValue.

If an empty string is returned, the command has failed.
The error code can be retrieved with a call to the function
Cet LastError.

int PerformAction(action);
String action;
Returns Integer Errorcode.

This function requires that the plug-in is loaded from an SSL
protected web page.

The following actions are yet available:

Action Description

Sign Generate XML signature

int GetlLastError();

Returns Integer Errorcode.

Call this function in order to retrieve the last error code of the
plug-in. Useful when for example function Get Par amreturns
NULL and one wants to know the reason of the error.

int Reset();

20

Signer2 Plug-in

Returns Integer Errorcode.

When called, al plug-in parameters are reset.

Sample Web Pages

This section includes some basic sample pages showing how to activate the plug-in.

Internet Explorer

<HTML>
<SCRI PT | anguage="JavaScri pt">
try {
var xCbj = new ActiveXObj ect (" Nexus. Si gnerV2CQt1");
if(xj) {
document. witeln("QObject installed.");

}
} catch (e) {
document. witel n("QObject not installed.");

}
</ SCRI PT>

<OBJECT | D="si gner 2" CLASSI D="CLSI D: FB25B6FD- 2119- 4cef - A915- A056184C565E" >
</ OBJECT>

<SCRI PT | anguage="JavaScri pt">
si gner 2. Set Par an(' Text ToBeSi gned' , ' SGVsbG8h') ;
si gner 2. Set Par an(' Nonce' , ' OTUAZTZmzZWJ=") ;
si gner 2. Set Paran(' ServerTime',"' 1221630668) ;
var res = signer2. PerformAction('Sign');
if (res == 0) {
document. witel n(' Signature successfully created.');
} else {
document.witeln('Failed to create signature. Error = '+res);

}
</ SCRI PT>
</ HTML>

Mozilla-based browsers

<HTML>
<SCRI PT | anguage="JavaScri pt">
i f (navi gator. plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m meTypes &&
navi gat or. mi neTypes["appl i cati on/ x- personal -si gner2"]) {
if (navigator
. m meTypes["appl i cati on/ x- personal - si gner2"] . enabl edPl ugi n) {
document.witeln("Plugin installed.");
}
}
}

</ SCRI PT>

<OBJECT id="signer2" type="application/x-personal -signer2" |ength=0 hei ght =0>
</ OBJECT>

<SCRI PT | anguage="JavaScri pt">

21

Signer2 Plug-in

si gner 2. Set Par an(' Text ToBeSi gned' , ' SGVsbG8h') ;
si gner 2. Set Par an(' Nonce' , ' OTUAZTZmzZWJ=") ;
si gner 2. Set Paran(' ServerTime',"' 1221630668) ;
var res = signer2.PerformAction('Sign');
if (res ==0) {

document. writel n(' Signature successfully created.');
} else {

docunment.witeln('Failed to create signature. Error = '+res);

}
</ SCRI PT>
</ HTML>

Signer2 Signature Sample

Thisisan example of aSigner2 signature complying with the BankI D specification (seereference[8]).

<?xm version="1.0" encodi ng="UTF- 8" ?>
<Si gnature xm ns="http://wwmv. w3. or g/ 2000/ 09/ xm dsi g#" >
<Si gnedl nf o>
<Canoni cal i zati onMet hod Al gorithm="http://ww. w3. org/ TR/ 2001/ REC- xm - c14n- 20010315" />
<Si gnat ur eMet hod Al gorithnm="http://ww. w3. or g/ 2000/ 09/ xn dsi g#r sa- shal" />
<Ref erence Type="http://ww. banki d. com si gnature/v1l.0.0/types" URI ="#bi dSi gnedDat a" >
<Tr ansf or ms>
<Transform Al gorithm="http://ww. w3. org/ TR/ 2001/ REC- xm - c14n-20010315" />
</ Tr ansf or ms>
<Di gest Met hod Al gorithm="http://ww. w3. or g/ 2001/ 04/ xm enc#sha256" />
<Di gest Val ue>i g6k45UnnmOHhFxhx3Dgl Ui zghPvpKYpee38cesvQut A=</ Di gest Val ue>
</ Ref er ence>
<Ref erence URI =" #bi dKeyl nf 0" >
<Tr ansf or ms>
<Transform Al gorithm="http://ww. w3. org/ TR/ 2001/ REC- xm - c14n- 20010315" />
</ Tr ansf or ms>
<Di gest Met hod Al gorithm="http://ww. w3. or g/ 2001/ 04/ xm enc#sha256" />
<Di gest Val ue>0z5gSJy9pEC2qQZk ONFROr sCdxdAdJyx8ZUBHThx| bc=</ Di gest Val ue>
</ Ref er ence>
</ Si gnedl| nf o>
<Si gnat ur eVal ue>
MAWLXZMBMBQZ41+J35/ W / TIJ40ws 6kpMzn0nf i 7UN4j RuSgwi 4Hn8MLXVxP17j Z2bGsJ+WBAT YSeCu
LVI shTLATdC2t Pt Yn86RToh640dSV2gEWNz 51 Sogknf 9vegVsACnI gaf 0Z7mvB99XI vsVkRYGegbsBn
LdYJu7ThRZxLyl =
</ Si gnat ur eVal ue>
<Keyl nfo | d="bi dKeyl nf o">
<X509Dat a>
<X509Certificate>
M | Cgj CCAWIgAW BAgl CSXkwDQYJKoZI hvc NAQEFBQAW. DEL MAk GA1UEBhMCUOUx Dj AVMBgNVBA0TBUS
| e HVz MQOwWCwWYDVQQDEWRDY SAX VB4 XDT A4 MDky Mz A3NTc z M=o XDT EWVDKy Mz A3NTc z MFowGT EXIVBUGAL
UEAXMOTWFs aWLgRXJ pa3Nz b24wgZ8wbDQYJ KoZI hve NAQEBBQA DgYOAM GJA0GBALEg) 7nDZOR9y WK
| UFXLH uoQB15r 9/ sYKdj br TLgCkZDI @B0dcNz1m f BVONcent gl 1Hc+y PkKSVz JbwGSi z QdFIMKT xb
D/ If zPvW knAVPn7 Z+Q+ruSWAKNXBXb6 P88ud6E1US5Hf 8GdUWhYnlr +kI Cwdf APpi SB3yPJ4/ | BYeX
AgMBAAG RTBDVAK GALUdEw QCVAAWEQYDVROOBAOECES JowHp23nVMBMGALUd I WQMVAQACE] u76E+CH
FUVAAGALUdDWE B/ wQEAW GQDANBgkghki GCOWOBAQUFAACCAQEASWHNASBT 2h2j f gf HFNzf b0zt f dgng
JT7k9I 31xr nAmynZZX+5kNKE7bFTI YT3Q@73Pt vPhMOdDvAC A2Y/ CAAl wn0T4j URVI/ t IO Ui bY6hl
4yt | pr VI CaFxy/ OEgKTPAhCEI bl KHgFpl vpcoXQHZ51i f pgf Kt +FAGH VT2qFu/ hyOxsi 2PNWD oyl L
vkj MdnkruMgt Gnl c7ASEeM/3sRI 7gBYr EKF7OMw6aRSnqaGPr bVTyl 4muWwoQa9Q6) TVZmBSTwTHs
P19edyws48Er aPBoaQ p0gBe2ynx6uexaM_K22HCNHI sOL+yGCGpcf a3K+ci di S6sj i 1SBD+f r k/ Q==
</ X509Certificate>
</ X509Dat a>
</ Keyl nf 0>
<oj ect >
<bankl dSi gnedDat a xm ns="http://ww. banki d. coni si gnature/v1.0.0/types" |d="bi dSi gnedDat a">
<usr Vi si bl eDat a charset ="UTF-8" vi si bl e="wysi wys">SGVsbG3h</ usr Vi si bl eDat a>
<srvl nf o>
<nonce>N YAMDMyM2I| =</ nonce>
<server Ti me>1222158113</ server Ti me>
</ srvl nf o>
<clientlnfo>
<funcl d>Si gni ng</ funcl d>

22

Signer2 Plug-in

<f gdn>reagan. | i | j ehol men. nexus. se</ f qdn>
<i p>10. 75. 28. 85</i p>

UGVY c29u YWk ZXhl PTQUMIAUMCAZ My ZwZXJzaWbzdF9l e GUIONCAX MCAWL] Mz JKNOZXNOX25nX2VAZTO
xLj AuMCAxJInRva2VuYXBpX2RsbDOOLj EwLj AuM knc GVyc29uYWkf ZG xsPTQUMIAuMC4Ay OSZuc FOwe
NNubF9kbGMINCAXMCAW.] MzJmkuZ19zdnN X2RsbDOOLj Ewlj AuMzMniY3Jke2l | bVIkbGMINCAx MCAw
Lj MeInm\yZHNI dGVj X2RsbDOOLj Ewlj AuMzMnY3JkcHIpc21f ZGxs PTQUMIAUMCAz MY Zi ¢l 9zdnNl X2R
sbDOXLj QUMCA5Imly X2VudVOkbGMIMS40Lj AuOSZi cnFuZd uZ19kbGnOMB40Lj AuOSZDULBf SUSTVE
FMIEVEPVRSVUUNMUGVY ¢ 29u YWAINCAX MCAWL | Mz JInBs YXRnb3Jt PXdpbj MyInBzX3Zl cnNpb249d2| ue
HAMYnVz dF9i ZWZvcmJOMTI yNDcOMDI 1My Y=

<uhi >qEYzPs1wl11e0YuJf 08h+yCer hg=</ uhi >
<ut b>cr 1</ ut b>
<r pr>qgkgYi WZci 1q+D5PWSRe5nRCSr 9U=</r pr >

YWj ZGvmZ2hpant sbWbvcHFyc3R1dnh5ek FCQORFRkdI SUpKSOx NTk9QUVI TVFVWWDEY Me QLN ¢40Q==

Error Codes

</clientlnfo>
</ bankl dSi gnedDat a>
</ Cbj ect >
</ Si gnat ur e>

Code Description

General Return Codes

0 OK

8001 Generd error

8002 Operation cancelled by user

8003 Memory error

8004 Invalid parameter

8005 Failed to decode request

8006 Failed to encode request

8007 Failed to convert to/from Unicode

8008 Operation not supported

8009 Token not present

8010 Failed to determine page URL

8011 Server not trusted

8012 Parameter is not Boolean

8013 Incorrect PIN

8014 Parameter value is not numeric

8015 SSL required

8016 All parameters required for running
PerformAction not set.

8017 Parameter value should be Base64-encoded.

8018 Invalid parameter value.

8019 Plug-in may not be called with | P address.

23

Signer2 Plug-in

Code Description

8020 Function not permitted.

8021 Personal busy. (Mac OS X only)

8022 Plug-in cannot communicate with Personal

8102 PIN is blocked

8551 Thefiletypeis not supported

8552 The file type has no associated application for

preview

24

Chapter 4. Authentication Plug-in

Introduction

The Authentication plug-in can be used for logging in to web servers. It isan alternative to client side
SSL authentication provided by web browsers. It creates an XML signature in accordance with the
BankID specification. (See reference [8].)

Plug-in Activation

The following <OBJECT> tags are used to activate the plug-in in aweb browser:

ClassiD DD137900-E4D7-4b86-92CC-2E968F846047 (Windows
only)

ProglD Nexus.AuthenticationCtl (Windows only)

Activation MIME type application/x-personal -authentication

Internet Explorer

Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX contral. It is activated using the
<OBJECT> tag.

Example 4.1. Example of an ActiveX control activation

<OBJECT | D="aut henti cati on"
CLASSI D="CLSI D: DD137900- E4D7- 4b86- 92CC2E968F846047" >
</ OBJECT>

It is also possible for the web server to use scripting to silently detect if the plug-in is installed in
the client.

Example 4.2. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">

try {
var xQbj = new ActiveXObj ect ("Nexus. Aut henticationCtl");

if(xj) {
document.witeln("Object installed.");

}
} catch (e) {
document.witeln("Ooject not installed.");

}
</ SCRI PT>

25

Authentication Plug-in

Mozilla-Based Browsers

In Mozilla-based browsers, the plug-in is implemented using the NPAPI. It can be activated using
the <OBJECT> tag. It must be noted that it is done in a different way than for Internet Explorer. The
ClassID is not used to identify the plug-in, but rather the activation MIME type as defined above.

Example 4.3. Example of how to activate the Mozilla-based browser plug-in
using the <OBJECT> tag

<OBJECT i d="aut henti cati on"
type="appl i cati on/ x- per sonal - aut henti cati on">
</ OBJECT>

Scripting can be used by the web server to decide whether the plug-in is installed in the browser by
checking if the activation MIME typeis registered.

Example 4.4. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">
if (navigator.plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m neTypes &&

navi gat or. mi neTypes["appl i cati on/ x- per sonal aut henti cation"]) {

if (navigator.m neTypes["application/x-personal aut henti cation"]. enabl edPl ugi n) {
docurment.writeln("Plugin installed");

}

}
}

}
</ SCRI PT>

Parameters

Thefollowing parametersare used in the Authenti cation interface. The parameterscan be set by calling
the function SetParam and retrieved by calling GetParam. To reset all parameters of the plug-in, call
the function Reset.

The parameters| ssuer s, Subj ect s and Pol i cys when combined use the following heuristic.
» If I ssuers and Subj ect s are set, logical AND is used to filter the result.
» If I ssuers andPol i cys areset, logical OR isused to filter the result.
e If Subj ect s andPol i cys areset, logical AND is used to filter the result.
« If al three are set, the following apply: (I ssuer s AND Subj ect s) ORPol i cys
They are case sensitive if nothing else is stated explicitly. Parameter
Parameter Explanation

| ssuers Defines the filter criteria based on Issuers used to reduce
the user's certificate choices when doing an authentication
operation. Specific certificate attribute search strings can be
specified, separated by , or ; where comma is interpreted

26

Authentication Plug-in

Subj ect s

Pol i cys

TokenRenmovedURL

TokenRenovedTi neout

Chal | enge

as logical AND and semicolon as logica OR. The following
X.500 attribute abbreviations are available: ¢cn, g, s, t, ou,
o,email,i,sn,street,l,st,c,d,anddc. Inaddition,
OIDs can be used.

Regular expressions using the wildcards * and ? can aso
be used. * matches an arbitrary number of characters. ?
matches exactly one character. To match a string containing an
asterisk or questionmark, the wildcard must be escaped using a
backslash \ . So to match an asterisk simply type\ *.

Example 1: The search string cn=Qur CA* will filter out all
certificates issued by CAs with common name starting with
Qur CA

Example 2: 2.5.4.6=SE will filter out al Swedish
certificates.

Defines the filter criteria based on Subjects used to reduce
the user's certificate choices when doing an authentication
operation. See Issuers.

Defines the filter criteria based on Policys used to reduce
the user's certificate choices when doing an authentication
operation. See I ssuers.

Note

Logical AND is not applicable for Policys.
Regular expressions are not applicable for Policys.

Optional (mandatory if TokenRenmovedTi meout is used).
Specifies the URL to which the client should make a connect
if the user removes the token used when authenticating.

This parameter can also be set after a successful authentication
and have immediate effect for the token used for the
authentication (If TokenRenovedTi meout isalsoset). This
is only possible within a pre-defined time frame after the
authentication. After that time frame, a new authentication is
required in order to set this parameter.

Optional (mandatory if TokenRemovedURL isused). Specifies
a time in minutes (1-720) after which the function for
disconnected token should no longer be activated. This means
that if the user disconnects higher token after the number
of minutes specified by this parameter, no reconnection to
TokenRemovedURL will be made.

This parameter can also be set after a successful authentication
and have immediate effect for the token used for the
authentication (If TokenRemovedURL is also set). This is
only possible within a predefined time frame after the
authentication. After that time frame, a new authentication is
required in order to set this parameter.

Mandatory. Contains the value to be signed as part of the
authentication. Limited UTF-8 string, which hasto be Base64-
encoded.

27

Authentication Plug-in

Server Ti ne

Ref Di gest Met hod

Si gnMet hod

Si gnature

Scripting

Optional. May contain atimestamp for the reference/tracability
by the server. The value should specify the number of seconds
from midnight January 1st 1970, UTC.

Optional. Digest algorithm used when creating the references
in the XML signature. The value may be SHA1 or SHA256.
Default is SHA256.

Optional. Encryption method for the signature. Today only
RSA-SHA1 is supported.

Only available through the function GetParam. Returns the
signature created. The result is Base64-encoded.

Following functions ar e exported from the authentication interface

Set Par am

Get Par am

Per f or mActi on

Cet Last Error

i nt Set Param(par anType, paranVal ue);

String paranfype;
String paranval ue;

Returns Integer Errorcode.

Function SetParam can be used to set parameters of the plug-in.
string Get Paran{paranilype);

String paranilype ;

Returns String paramValue.

If an empty string is returned, the command has failed.
The error code can be retrieved with a call to the function
GetlLastError.

int PerformAction(action);

String action;

Returns Integer Errorcode.

This function requires that the plug-in is loaded from an SSL
protected web page.

The following actions are yet available:

Action Description

Aut henti cat e Generate authentication
signature

Unr egi st er URL Remove token remova
detection for a given
TokenRemovedURL

int GetlLastError();

Returns Integer Errorcode.

28

Authentication Plug-in

Cadll this function in order to retrieve the last error code of the
plug-in. Useful when for example function GetParam returns
NULL and one wants to know the reason of the error.

Reset int Reset();

Reset returns Integer Errorcode.

When called, al plug-in parameters are reset.

Sample Web Pages

This section includes some basic sample pages showing how to activate the plug-in.

Internet Explorer

<HTML>
<SCRI PT | anguage="JavaScri pt">
try {
var xQbj = new ActiveXObj ect (" Nexus. Aut henticationCtl");
if(xj) {
docunent. witeln("Qbject installed.");

}
} catch (e) {
document. witel n("Qbject not installed.");

}
</ SCRI PT>

<OBJECT | D="aut henti cat e"
CLASSI D="CLSI D: DD137900- E4D7- 4b86- 92CC2E968F846047" >
</ OBJECT>

<SCRI PT | anguage="JavaScri pt">
aut henti cat e. Set Par an(' TokenRenobvedURL' ,
" aHROcDovL3Rl c3Quc2VydmvyLm\vbS' +
' 9Mb2dpbj 9hY3Rpb249cnVt b3Zl ZCZpZDOox') ;
aut henti cat e. Set Par an(' TokenRenovedTi meout ', " 1');
aut henti cat e. Set Paran(' Chal | enge' , ' YnRhNW yMrc=");
aut henti cat e. Set Paran(' ServerTi me', "' 1221629266') ;
var res = authenticate. PerformAction(' Authenticate');

if (res == 0)

{
docunent. witel n(' Authentication signature successfully created.");

} else {
docunment.witeln('Failed to create authentication signature. Error = '+res);

}

</ SCRI PT>
</ HTM.>

Mozilla-based browsers

<SCRI PT | anguage="JavaScri pt">
i f (navi gator. plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m neTypes &&
navi gat or. mi neTypes["appl i cati on/ x- per sonal aut henti cation"]) {
if (navigator
. m neTypes["appl i cati on/ x- per sonal aut henti cati on"]

29

Authentication Plug-in

.enabl edPl ugi n) {
docunent.witeln("Plugin installed.");
}
}
}

}
</ SCRI PT>
<OBJECT id="authenticate" type="application/x-personal -authentication"
| engt h=0 hei ght =0>
</ OBJECT>
<SCRI PT | anguage="JavaScri pt">
aut henti cat e. Set Par am(' TokenRenobvedURL' ,
" aHROcDovL3R c3Quc2VydnvyLm\vbS' +
' 9Mb2dpbj 9hY3Rpb249cnVt b3Zl ZCZpZDOox') ;
aut henti cat e. Set Par am(' TokenRenovedTi meout ', " 1');
aut henti cat e. Set Paran(' Chal | enge' , ' YnRhNW yMrc=");
aut henti cat e. Set Paran(' ServerTi me', "' 1221629266') ;
var res = authenticate. PerformAction(' Authenticate');

if (res == 0)
{
docunent. witel n(' Authentication signature successfully created.");
} else {
document.witeln('Failed to create authentication signature. Error = '+res);
}
</ SCRI PT>
</ HTM.>

Authentication Signature Sample

This is an example of an Authentication signature complying with the BanklD specification (see
reference [8]).

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>

<Si gnature xm ns="http://wwm. w3. or g/ 2000/ 09/ xm dsi g#" >

<Si gnedl nfo xm ns="http://wwm. w3. or g/ 2000/ 09/ xm dsi g#" >

<Canoni cal i zati onMet hod Al gorithnm="http://ww. w3. org/ TR/ 2001/ REC- xm - c14n- 20010315" >
</ Canoni cal i zat i onMet hod>

<Si gnat ur eMet hod Al gorithnm="http://ww. w3. or g/ 2000/ 09/ xn dsi g#r sa- shal">

</ Si gnat ur eMet hod>

<Ref erence Type="http://ww. banki d. com si gnature/vl.0.0/types" URI ="#bi dSi gnedDat a" >
<Tr ansf or ms>

<Transform Al gorithm="http://ww. w3. org/ TR/ 2001/ REC- xm - c14n- 20010315" >

</ Tr ansf or mp

</ Tr ansf or ms>

<Di gest Met hod Al gorithm="http://ww. w3. or g/ 2001/ 04/ xm enc#sha256" ></ Di gest Met hod>
<Di gest Val ue>bHOdj 4Rgn7wn395SP5nc52R71B4Cex3akKWal D+cGgQ=</ Di gest Val ue>

</ Ref er ence>

<Ref erence URI =" #bi dKeyl nf 0" >

<Tr ansf or ms>

<Transform Al gorithm="http://ww. w3. org/ TR/ 2001/ REC- xm - c14n- 20010315" >

</ Tr ansf or mp

</ Tr ansf or ms>

<Di gest Met hod Al gorithm="http://ww. w3. or g/ 2001/ 04/ xm enc#sha256" ></ Di gest Met hod>
<Di gest Val ue>nKZsSsN0+98sQn72xj cp0S+pf 7+Cnw zgyb9r ywj eBM=</ Di gest Val ue>

</ Ref er ence>

</ Si gnedl| nf o>

<Si gnat ur eVal ue>

hPknmF23MnWB8f dSBecwhhi YAWHy VDnxv 18l v83BZnmk2Zv/ xywj SJOTB50P9r KwCzZdYDgMmM-LwnB
z023Yxmb9u5nBf gh2Yl DpZ5Age QRf hGyqdXwi uOLWA8j enCFBYny8gci Uei i dg+DRFhui M7

90 BWBIAYYCKb360f C6+Kw=

</ Si gnat ur eVal ue>

<Keyl nfo xm ns="http://ww. w3. org/ 2000/ 09/ xm dsi g#" | d="bi dKeyl nf 0" >

<X509Dat a>

<X509Certificate>

M | Cgj CCAWIgAW BAgl CSXgwDQYJKoZIl hvc NAQEFBQAW. DEL MAk GALUEBhMCUOUx Dj AVB

gNVBAOTBUSI e HVz MQOwWCWY DVQQDEWRDYSAX MB4XDTA4 DKy Mz A3NT ¢y OVo XDTEWVDKy Mz

A3NTcy OVowGT EXMBUGAL UEAX MOTWFs aWELgRXJ pa3Nz b24wgZ8wbDQYJ KoZI hvec NAQEBBQA

30

Authentication Plug-in

DgYOAM GIJA0GBAM B5J5+f i A2LKg6ZhXd02A/ ZEi 3V5r PPal NUGTpJf UVWNdm+p9J 60AB
r PUHTKW 6wgv2BHb Cki gbpQQRQ@2MCzewXmry6ei g3f ZHN+i 6r t GHvdNvh4eQeywDL4al f

Ny LGFri AoAOect | nk/ NzDOt 1uQ¥ / p4xQwy hl XI uQOMEXPOAgMBAAG RTBDMAK GA1UdEW
QCVAAWEQYDVROOBAOECEShhMhi 3Fdj MBMGALUd I wWQMVAQACE] u76 E+CHFUMA4 GALUd DWE
B/ wWQEAW FoDANBgkghki GOWOBAQUFAACCAQEAL4d3y CTVESf 7THbzHZagHgz AZ71 dQFf / t

wp9MzMoVbHs/ bgrt / W t GAB1Go5dVHU2vee X08sVaHceg47W gZCCYbLa2V9j RSCr PA5T
fyBcl k7J6gHT8xY3dVFndbVl AYESSqJSObYkD/ Cm+nPpKMBFkhd7+s2enPFMrhy Hr t Cde
S91GB4J7Ft 2DSpCt bj 4xj War r d+Vd2pcf HoPl WrBk CDy P+gzHRO4xC+NI j dr nBvY1F3t +
gGRFhf 4mlst 0k+3Gpr L1r ur g2TcCA9j kSOFj USxmRBOSWSV/ r Dj f Hrt 3Xi f / cf SN9Ys28
z0i D3nFeJZf u4Xvi 2EBMSWCd+y 1gvOWI g==

</ X509Certificate>

</ X509Dat a>

</ Keyl nf 0>

<oj ect >

<bankl dSi gnedDat a xm ns="htt p://wwm. banki d. coni si gnature/v1.0.0/types"
| d="bi dSi gnedDat a" >

<srvl nf o>

<nonce>N Zi Nm{BMzE=</ nonce>

<server Ti me>1222156707</ server Ti me>

</ srvl nf o>

<clientlnfo>

<funcl d>l dentification</funcld>

<host >

<f gdn>reagan. | i | j ehol men. nexus. se</ f qdn>
<i p>10. 75. 28. 85</i p>

</ host >

<versi on>

UGVy c29uYWKT ZXhI PTQUMTAUMCAZ My ZwZXJzaWbz dF9l e GUINCAX MCAWL] Mz JKNOZXN
0X25nX2V4ZTOxLj AuMCAxJInRva2VuYXBpX2RsbDOOLj EwLj AuM ke Gvy c29uYWkf ZG
xS PTQUMIAuMCAy OSZuc FOwe nNubFOkb GMONCAX MCAWL] Mz InxuZ19zdnN X2RsbDOOL
j BEwLj AuMz Mhiy3Jkc2l | bVOkbGAMINCAXMCAWL] Mz I Ny ZHNI dGV) X2RsbDOOLj Ewlj Au
Mz MY3JkcHIpc21f ZGxs PTQUMITAUMCAZ My Zi ¢l 9zdnNl X2RsbDOxLj QUMCA5Imly X2V
udV9kbGMOMS40Lj AuCSZi cnFuZd uZ19kbGaOMS40L) AuCSZDULBf SUSTVEFMIEVEPY
RSVUUNMUGVY ¢ 29u YWWONCAX MCAWL | Mz InBs YXRnb3Jt PXdpbj MyInBzX3ZI cnNpb249d
21 ueHAMYnvVzdF9i ZWZvcmJOMIT yNDcOMDI 1My Y=

</ versi on>

<env>

<ai >

<uhi >qEYzPs1wl11e0YuJf 08h+yCer hg=</ uhi >

<ut b>cr 1</ ut b>

<r pr>qgkgYi WZci 1q+D5PWSRe5nRCSr 9U=</r pr >

<gbvv>YW)j ZGvnZ2hpant sbWsvcHFyc3R1ldnh5ek FCQORFRkdl SUpKSOX NTk9QUVITVFVWM
DEyMz QLN c40Q==</ gbvv>

</ ai >

</ env>

</clientlnfo>

</ bankl dSi gnedDat a>

</ Cbj ect >

</ Si gnat ur e>

Error codes

Code Description

General Return Codes

0 OK

8001 Generd error

8002 Operation cancelled by user

8003 Memory error

8004 Invalid parameter

8005 Failed to decode request

8006 Failed to encode request

8007 Failed to convert to/from Unicode

31

Authentication Plug-in

Code Description

8008 Operation not supported

8009 Token not present

8010 Failed to determine page URL

8011 Server not trusted

8012 Parameter is not Boolean

8013 Incorrect PIN

8014 Parameter value is not numeric

8015 SSL required

8016 All parameters required for running
PerformAction not set.

8017 Parameter value should be Base64-encoded.

8018 Invalid parameter value.

8019 Plug-in may not be called with | P address.

8020 Function not permitted.

8021 Personal busy. (Mac OS X only)

8022 Plug-in cannot communicate with Personal

8102 PIN is blocked

Authentication plug-in specific Return Codes

8501 Such TokenRemovedURL not registered. Can be
returned when action UnregisterURL is called.
8502 The parameters TokenRemovedURL and

TokenRemovedTimeout are set too late after
the last successful authentication. A new
authentication is required in order to set these
parameters.

32

Chapter 5. Registration Utility Plug-in

Introduction

The Registration Utility makesit possible to allow auser to connect to a Certification Authority, such
as Nexus Certificate Manager, to request certificates and to store them on atoken. If a software token
or key pairsis not available, they are created.

Plug-in Activation

The following <OBJECT> tags are used to activate the plug-in in aweb browser:

ClassiD AC7AEFE1-E745-4D21-881C-D7B6F22275B8 (Windows
only)

ProglD Nexus.RegULtilCtl (Windows only)

Activation MIME type application/x-personal -regutil

Internet Explorer

Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX control. It is activated using the
<CBJECT> tag. The parameters are set later using a scripting language.

Example5.1. Example of an ActiveX control activation

<OBJECT | D="RegUtil"
CLASSI D="CLSI D. ACTAEFE1- E745- 4D21- 881C- D7B6F22275B8" >
</ OBJECT>

It is also possible for the web server to use a scripting language to silently detect if the plug-in is
installed in the client.

Example 5.2. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">

try {
var xQbj = new ActiveXObj ect ("Nexus. RegUtil Ctl");
if(xj) {
docunent.witeln("Object installed.");

}
} catch (e) {
document.witel n("Object not installed.");

}
</ SCRI PT>

This ActiveX Object should not be used for enrollment. Instead the <OBJECT> tag must be used, as
described above, for the object to be initialized correctly.

33

Registration Utility Plug-in

The Registration Utility plug-in is scripted only; therefore, we recommend that Solution 1 is used.
Refer to “ Appendix A — Eolas Patent ” for more information.

Mozilla-Based Browsers

In Mozilla-based browsers, the plug-in isimplemented using the NPAPI. It can be activated using the
<OBJECT> tag. It should be noted that thisis done in a different way than for Internet Explorer. The
ClassID is not used to identify the plug-in, but rather the activation MIME type as defined above.

Example 5.3. Example of how to activate the Mozilla-based browsers plug-in
using the <OBJECT> tag

<OBJECT | D="RegUtil" TYPE="application/x-personal-regutil">
</ OBJECT>

A script can be used by the web server to decide whether the plug-in is installed in the browser by
checking if the activation MIME type is registered.

Example 5.4. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">
i f (navi gator. plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m neTypes &&

navi gat or. mi neTypes[" appl i cati on/ x-personal regutil"]) {
i f (navigator
. m meTypes["appl i cation/ x-personal -regutil"].enabl edPl ugi n) {

docurment.writeln("Plugin installed");
}
}
}

}
</ SCRI PT>
Parameters
Parameters available to SetParam are as follows
Type Parameter Value
t okenNane Name of token to be created. If the tokenName and PIN are

not set, Personal will pop-up adialog for the user to input the
data. Itisnot possibleto just use tokenName parameter without
using the PIN parameter.

t okenType Specifies token type to enrol to.

The following token types are supported: pkcsl12 and
i nternal store.

Defaultisi nt er nal st or e.

pi n PIN code protecting the keys in the token to be created. If the
PIN and tokenName are not set, Personal will pop-up adialog
for the user to input the data. It is not possible to just use PIN
parameter without using the tokenName parameter.

34

Registration Utility Plug-in

keySi ze

keyUsage

oneTi nePassword

subj ect DN

hashAl g

maxLen
nm nLen
m nChar s
mnDigits

rfc2797cntoid

Scripting

Key size specified in bits. For example, 1024 or 2048.

Comma separated list of key usage strings according to X.509.
Available values are: digitalSignature, keyEncipherment,
nonRepudiation, and contentCommitment.

Example, "digital Signature,keyEncipherment".
One time password that will be verified on the server.

User's Distinguished Name in the certificate request. The
following X.500 attribute abbreviations are available: CN, N, G,
S, T,QU, 0 DVD, SN, Ul , STREET, L, ST, C,EM D, and O D.

Example "CN=Bob,C=SE" or "OID.2.5.4.3=Kalle".

Optional hash algorithm parameter to be used when signing
request.

Available values are VD5, SHAl, SHA224, SHA256,
SHA384, SHA512, Rl PEMD128, and Rl PEMD160. Default
isSHAL.

Maximum allowed PIN length.

Minimum allowed PIN length.

Minimum number of charactersthat should beenteredinaPIN.
Minimum number of digits that should be entered in a PIN.
An optional parameter. If set to true, it uses PKlData
OID defined in RFC2797. The OID will be id-cct-
PKIData ::= {1.3.6.1.5.5.7.12. 2}.

Default isfalse.

Thefollowing functions are implemented

Set Par am

Get Par am

Val i dat ePi n

i nt Set Par am(par anType, paranVal ue);

String paranfype;
String paranval ue;

Returns Integer Errorcode.

Sets a parameter.

String GetParan(paranilype);
String paraniype;

Returns String paramValue.

If an empty string is returned, the command has failed. The
error code can be retrieved with Get Last Error () .

int ValidatePin(PIN);

35

Registration Utility Plug-in

I ni t Request

Cr eat eRequest

String PIN,
Returns Integer Errorcode.

The PIN is checked according to the PIN policy previously set.
The policy is checked against the following parameters:

e mnLen

e m nChars

* maxLen

e mnbDigits

e conpareStr

* maxConpar el nRow
« maxEqual | nRow

If no PIN policy has been specified, any PINswill be accepted.
Thisisthe default policy.

Note

The method remains for backwards compatibility. We
recommend that the application handles the token
name and PIN input data.

int InitRequest(requestType);
String request Type;
Returns Integer Errorcode.

I ni t Request tellstheplug-inthat arequest of thegiventype
should be created when CreateRequest is called. It stores the
given parameters, so they are available for the actual creation.

The value of r equest Type can be either pkcs10 or cnt
(default if not provided is “cmc”). To generate a PKCS #10
regquest, the parameters that must be set using SetParam are as
follows:

* keySi ze
« keyUsage
e subj ect DN

In addition, hashAlg can be used optionally. To generate a
CMC request, the parameters that must be set are as follows:

* oneTi nePassword

In addition, | ni t Request with r equest Type equa to
pkcs10 must have been called twice before initializing the
creation of the CMC request.

string CreateRequest();

36

Registration Utility Plug-in

StoreCertificates

Get Last Error

Cet Response

Returns String Base64-encoded certificate request.

This function creates the request previously specified by
InitRequest. If the request previously specified is a CMC
reguest, it also creates the two PKCS #10 requests as specified
before and puts them into the CMC request.

Internally a new token is created, with one key pair for each
PKCS #10 request that has been specified. If the tokenName
and PIN parameters have not been set, Personal will present the
user with adiaog, allowing him or her to enter a token name,
and set a PIN for the token. The user must then enter a PIN
which matches the specified PIN policy. If another token with
the same name already exists, anumber will be appended to the
name in order to create a unique name.

If the tokenName and PIN parameters have been set, no dialog
will be presented. If the PIN does not match the PIN policy, the
function will fail. If atoken with the same name already exists,
a unique name will be created in the same way as specified
above.

If an empty string is returned, the command has failed. The
error code can be retrieved with GetLastError().

i nt StoreCertificates(type,
certificateBl ob);

String type;

String certificateBl ob;

Returns Integer Errorcode.

The type must be p7c for a PKCS #7 certificate blob. The
certificate BLOB should be a Base64-encoded response to
the certificate request. The certificates will be stored in the
appropriate token containing the public key(s) associated with
the issued certificates. If no matching public key is found, it
will not be possible to store the certificates. This means that if
a CA certificate should be stored in atoken, it must be bundled

together with the user's certificates (which always should be
the case).

Note

Personal does not support storing of Root CA
certificates.

int GetlLastError();

Returns Integer Errorcode.
string Get Response(chall enge);
String chal |l enge;

Returns String.

37

Registration Utility Plug-in

GetResponse is called with a Base64 encoded challenge string
to do client verification. Personal calculates the response and
returns this as a Base64 encoded string. If an error occurred an
empty string will be returned.

Reset int Reset();

Returns Integer Errorcode.

Resets all parameters.

Usage and GUI

Creating a Token

The web page sets the necessary parameters and calls InitRequest with request type set to pkcs10,
to tell the plug-in that a PK CS #10 request should be created using the given parameter set.

The web page script might then change some parameters, for instance, keyUsage, and call InitRequest
again, to tell the plug-in that a second PK CS#10 request should be created. If thisis done, InitRequest
must also be called athird time, but thistimewith type cnt, to specify that the two PK CS#10 requests
should be packaged in a CMC request.

When the CreateRequest function is called, the plug-in will ask the Personal application to create a
new token with the necessary key pairs and the specified requests. Please note that before this no
communication between the plug-in and the Personal application had taken place. If the latest call to
InitRequest specifies a PKCS #10 request, a token containing one key pair will be created, and one
PKCS #10 request will be returned.

If the latest call to InitRequest specifiesa CMC request, a new token containing two key pairswill be
created and a CMC request containing two PKCS #10 requests will be returned.

If the tokenName and PIN parameters have not been set, Personal will present the user with adialog,
allowing him or her to enter a token name, and set a PIN for the token. The user must then enter a
PIN which matches the specified PIN policy. If another token with the same name already exists, a
number will be appended to the namein order to create a unique name.

If the tokenName and PIN parameters have been set, no dialog will be presented. If the PIN does not
match the PIN policy, the function will fail. If atoken with the same name already exists, a unique
name will be created in the same way as specified above.

If the web page has set a PIN policy, using the available parameters, this will be stored in the token,
and applied to the PIN that the user has set.

It is also possible to use the ValidatePIN method to verify a PIN against the specified PIN policy.
However, thisis not recommended asiit is better for the application to handle the PIN input instead.

Store Certificates

The application will search for the token containing the same public keys asthe onesin the certificates,
and choosethat token for storage of the certificates. Thus, no token name hasto be entered at this stage.

If no matching public key is found, it will not be possible to store the certificates. This means that
if a CA certificate should be stored in a token, it must be bundled together with the user certificates
which always should be the case.

38

Registration Utility Plug-in

PIN Policy

If no PIN policy is set, the minimum length of the PIN will be set to 1 and the maximum to 255
characters. There will be no restrictions on the PIN.

If the web page specifiesaPIN policy, this policy will be stored in the created token. This means that
if the user changes the PIN, he or she will still haveto follow the PIN policy.

However, thisisonly true aslong as the token is kept in the Internal Store. If the token is exported to
aPKCS#12 file, the PIN policy will be lost, since the PKCS #12 standard does not include any PIN
policies. If the user then imports the PKCS #12 file into a Personal Internal Store again, the newly
created token will not have any PIN policy restrictions.

Sample Web Pages

This section includes some basic sample pages, showing how to activate the plug-in.
Internet Explorer

Example 5.5. Example of creating a certificate request (Windows only)

<HTML>
<SCRI PT | anguage="JavaScri pt">
try {
var xQbj = new ActiveXObj ect ("Nexus. RegUtil CtIl");
if(xj) {
docunent.witeln("Object installed.");

}
} catch (e) {
docunment.witeln("Ooject not installed.");

}
</ SCRI PT>

<OBJECT I D="regutil"
CLASSI D="CLSI D: AC7AEFE1- E745- 4D21- 881C- D7B6F22275B8" >
</ OBJECT>

<SCRI PT | anguage="JavaScri pt">
regutil. Set Paran(' keySi ze',"'2048");
regutil. Set Paran(' keyUsage', ' digital Signature, keyEnci phernent');
regutil. Set Paran(' subj ect DN ,' CN=BOB, OC=Nexus, C=SE') ;

regutil .l nitRequest (' pkcsl0');
regutil. Set Paran(' keyUsage', ' nonRepudi ation');
regutil .l nitRequest (' pkcsl0');

regutil. Set Paran(' oneTi nePassword',' 1234");
regutil. Set Paran(' naxLen',"'16");
regutil. SetParam(' m nLen',"'4");
regutil. SetParam(' mi nChars','1");
regutil.SetParam(' minDigits','1");
regutil. SetParan(' conpareStr', "qwerty");
regutil . Set Paranm(' naxConparel nRow , "' 3");
regutil. Set Paran(' maxEqual | nRow ,"' 2');
regutil.lnitRequest('cnt');
docunent.witeln(regutil.CreateRequest());
docunent.witeln(regutil.GetLastError());
</ SCRI PT>
</ HTM.>

39

Registration Utility Plug-in

Example 5.6. Example of storing the certificate response (Windows only)

<HTML>
<OBJECT I D="regutil"
CLASSI D="CLSI D: AC7AEFE1- E745- 4D21- 881C- D7B6F22275B8" >
</ OBJECT>
<SCRI PT | anguage="JavaScri pt">
regutil.StoreCertificates('p7c', <base64 encoded PKCS#7 certificate bl ob>);
</ SCRI PT>
</ HTM.>

Mozilla-based browsers

Example5.7. Example of creating a certificate request

<HTM_>
<SCRI PT | anguage="JavaScri pt">
i f(navigator. plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m nmeTypes &&
navi gat or. mi neTypes[" appl i cati on/ x-personal regutil"]) {
if (navigator.mneTypes["application/x-personal -regutil"].enabl edPl ugi n)
{
docunment.witeln("Plugin installed");
}
}
}

}
</ SCRI PT>

<OBJECT | D="regutilld"
TYPE="appl i cati on/ x- personal -regutil ">
</ OBJECT>

<SCRI PT | anguage="JavaScri pt">
var regutil = docunent.getEl ementByld('regutilld);
regutil. Set Paran(' keySi ze',"'2048");
regutil. Set Paran(' keyUsage', ' digital Signature, keyEnci phernent');
regutil. Set Paran(' subj ect DN ,' CN=BOB, O=Nexus, C=SE') ;
regutil .l nitRequest (' pkcsl0');
regutil. Set Paran(' keyUsage', ' nonRepudi ation');
regutil .l nitRequest (' pkcsl0');
regutil. Set Paran(' oneTi nePassword',' 1234");
regutil. Set Paran(' maxLen',"'16");
regutil. SetParam(' m nLen',"'4');
regutil. SetParam(' mi nChars','1");
regutil.SetParan('minDigits','1");
regutil. SetParan(' conpareStr', "qwerty");
regutil. Set Paranm(' naxConparel nRow , ' 3');
regutil. Set Paran(' maxEqual | nRow , "' 2")
regutil.lnitRequest('cnt');
docunment.witeln(regutil.CreateRequest());
docunent.witeln(regutil.GetLastError());

</ SCRI PT>

</ HTM.>

40

Registration Utility Plug-in

Example 5.8. Example of storing the certificate response

<HTM_>
<OBJECT | D="regutilld"
TYPE="appl i cati on/ x- personal -regutil ">

</ OBJECT>
<SCRI PT | anguage="JavaScri pt">
var regutil = docunent.getEl ementByld('regutilld);
regutil.StoreCertificates('p7c', <base64 encoded PKCS#7 certificate blob>);
</ SCRI PT>
</ HTM.>

Error Codes

Code Description
0 OK
1 The call to StoreCertificate failed as a certificate

could not be stored. The public key doesnot match
that of any existing token.

630 PIN istoo long or too short

631 Too few lettersin the PIN

632 Too few digitsin the PIN

633 Too many equal charactersin arow

634 Too many characters from CompareStr exist in a
row

640 Invalid parameter

641 Memory error

662 Failed to convert to/from UNICODE

666 Failed to convert to/from Base64

668 Failed to encode the request

669 Failed to decode the request

671 Failed to write certificates

672 subjectDn parameter has incorrect syntax

999 Genera Error

1024 Key length is not specified

1025 Key usage is not specified

1026 Invalid key usage

1027 PIN policy specification is inconsistent (e.g.
minLen =5 and maxLen = 4)

1028 Parameter is not numeric

1029 SetParam(HashAlg) was called with unknown
algorithm name

1030 CreateRequest called without previous call to
InitRequest

1031 An unsupported key length of less than 368 bits
have used

1032 Parameter is not boolean.

41

Registration Utility Plug-in

Code Description

1033 Token typeisinvalid.

1034 Operation cancelled by the user.

1035 Duplicate token name.

1036 Plug-in cannot communicate with Personal

Format of a CMC Request and Response

For detailed information about CMC refer to [5].

Request

The new content object PKIData is used as the body of the full PKI request message. PKIData can
be defined in two ways.

Default is

id-ct-PKiData ::={ 1.3.6.1.5.5.7.5.2 }

Whenrfc2797cntoi d = true then

id-ct-PKiData ::= { 1.3.6.1.5.5.7.12.2 }

The ASN.1 contentsis as follows:

e cont r ol Sequence will be empty.

* reqSequence consists of asequence of PKCS#10 requests.
» cnmsSequence will be empty.

» ot her MsgSequence will contain the OID described in “One Time Password " .

One Time Password

The One Time Password (OTP) is stored in the ot her MsgSequence field. It isidentified by:

i d-pi n-code OBJECT IDENTIFIER ::={ 1.2.752.36.4.1.1
}
and is defined by:
PinCode ::= I A5String
Response

The certificates are always returned as a simple PK| response, i.e. a PK CS#7 signedData object.

42

Chapter 6. Administration Plug-in

Introduction

The Administration plug-in isused to manage tokensin Personal. It makesit possibleto export, import
and delete tokens as well as to administrate PINs. In the branding module (see “ Branding” , it is
possible to configure the plug-in to only be run from a specific host.

Plug-in Activation

The following <OBJECT> tags are used to activate the plug-in in aweb browser:

ClassiD 524B98BC-7B94-48CB-8F6E-CEC7D1B64522 (Windows
only)

ProglD Nexus.WebAdminCtl (Windows only)

Activation MIME type application/x-personal -webadmin

Internet Explorer

Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX control. It is activated using the
<OBJECT> tag. The parameters are set later using a scripting language.

Example 6.1. Example of an ActiveX control activation

<OBJECT | D="webadm n"
CLASSI D="CLSI D: 524B98BC- 7B94- 48CB- 8F6E- CEC7D1B64522" >
</ OBJECT>

It is also possible for the web server to use a scripting language to silently detect if the plug-in is
installed in the client.

Example 6.2. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">

try {
var xQbj = new Acti veXObj ect (" Nexus. WebAdmi nCt1");

if(xpj) {
docunment.writeln("Coject installed.");

}
} catch (e) {
docunment.writel n("Coject not installed.");

}
</ SCRI PT>

43

Administration Plug-in

This ActiveXObject should not be used for administration. Instead the <OBJECT> tag must be used,
as described above, for the object to be initialized correctly.

The Administration plug-in is scripted only; therefore, we recommend that Solution 1 is used. Refer
to“ Appendix A — Eolas Patent”.

Mozilla-Based Browsers

In Mozilla-based browsers, the plug-in isimplemented using the NPAPI. It can be activated using the
<OBJECT> tag by supplying some or al parameters using the <PARAM> tag. It must be noted that it
is donein adifferent way than for Internet Explorer. The ClassID is not used to identify the plug-in,
but rather the activation MIME type as defined above.

Example 6.3. Example of how to activate the Mozilla-based browser plug-in
using the <OBJECT> tag

<OBJECT i d="webadm n"
type="appl i cati on/ x- per sonal - webadm n" >
</ OBJECT>

Scripting can be used by the web server to decide whether the plug-in is installed in the browser by
checking if the activation MIME typeis registered.

Example 6.4. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">
if (navigator.plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m neTypes &&
navi gat or. mi neTypes["appl i cati on/ x- per sonal webadm n"]) {
if (navigator.m neTypes["application/x-personal webadm n"] . enabl edPl ugi n) {
docurment.writeln("Plugin installed");

}
}
}

}
</ SCRI PT>

Parameters

This section describes which parameters are defined for the Administration plug-in. The parameters
can be set by calling the function SetParam. To reset all parameters of the plug-in, call the function
Reset.

The parameters are case sensitive if nothing elseis stated explicitly.
Parameter Description

| ssuers Defines the filter criteria based on Issuers used to reduce
the user's certificate choices when doing an administrative
operation. Specific certificate attribute search strings can be
specified, separated by "," or ;" where commais interpreted
as logical AND and semicolon as logical OR. The following
X.500 attribute abbreviations are available: ¢cn, g, s, t, ou,

44

Administration Plug-in

o,emnil,i,sn,street,|,st,c,d, anddc. Inaddition,
OIDs can be used.

Regular expressions using the wildcards * and ? can also
be used. * matches an arbitrary number of characters. ?
matches exactly one character. To match astring containing an
asterisk or questionmark, the wildcard must be escaped using a
backslash \ . So to match an asterisk simply type\ *.

Example 1: The search string cn=Qur CA* will filter out all
certificates issued by CAs with common name starting with

Qur CA
Example 2: 2.5.4.6=SE will filter out all Swedish
certificates.

Subj ect s Defines the filter criteria based on Subjects used to reduce

the user's certificate choices when doing an administrative
operation. See Issuers.

Pi nOperati on Optional parameter that specifies which kind of PIN operation
should be performed. Following values are supported:

changepin Change PIN operation will be performed.

unbl ockpi n Unblock PIN operation will be performed.

If the parameter is not set the PIN administration operation
will be initialized so that both change and unblock can be

performed.

chal | enge Base64 encoded challenge string. Used to set the challenge
before a call to PerformAction with parameter getResponse is
called.

bbdl nf o Base64 encoded xml-data that is used when afollowing call to

PerformAction with parameter renewPolldatesis called.

Scripting

All parameters should be in UTF-8 format in order for the plug-in to be able to treat the input data
in acorrect way.

Following functions ar e exported from the administration interface
Set Par am i nt Set Param(par anType, paranVal ue);

String paraniype;
String paranval ue;

Returns Integer Errorcode.

Function Set Par amcan be used to set parameters of the plug-
in.

Get Par am string GetParan{paranilype);
String paranfype;

Returns String paramVa ue.

45

Administration Plug-in

Per f or mActi on

Cet Last Error

Reset

If an empty string is returned, the command has failed.
The error code can be retrieved with a call to the function
Get Last Error.

int PerformAction(action);
String action;
Returns Integer Errorcode.

This function is caled in order to initiate a specific
administration action.

The following actions are yet available:

Action Description

pi nAdmi ni stration Administrate PIN of a token.
The operation is defined by
the parameter PinOperation. If
PinOperation is not set, both
change and unblock PIN is
allowed.

export Token Export atoken from Personal .
The token will be exported
in the format given in
the parameter ExportType. If
ExportType is not set, the
behaviour configured in the
Personal installation will be

used.
i mport Token Import atoken to Personal.
del et eToken Delete atoken from Personal.
get Response Calculates the response from
aprevious set challenge using
SetParam.
renewPol | Dat es Requires that SSL is used.

Sets Auto Update parameters
from previous set data
using parameter bbdinfo in
SetParam. Inthebranding, itis
also possible to define which
servers are allowed to run the

plug-in.

int GetlLastError();

Returns Integer Errorcode.

Call this function in order to retrieve the last error code of the
plug-in. Useful when for example function

GetParam
returns NUL L and one wants to know the reason of the error.

int Reset();

46

Administration Plug-in

Returns Integer Errorcode.

When called, al plug-in parameters are reset.

Sample Web Pages

This section includes some basic sample pages, showing how to activate the plug-in.

Internet Explorer

<HTML>
<SCRI PT | anguage="JavaScri pt">
try {
var xQbj = new ActiveXbj ect (" Nexus. WebAdmi nCt1");
if (xOoj) {

docunent. witeln("Object installed.");

}
} catch (e) {
document. witel n("Qbject not installed.");

}
</ SCRI PT>

<OBJECT | D="webadm n"
CLASSI D="CLSI D: 524B98BC- 7B94- 48CB- 8F6E- CEC7D1B64522" >
</ OBJECT>

<SCRI PT | anguage="JavaScri pt">
webadmi n. Set Par an(' Pi nOperation', ' changepin');
webadmi n. Set Paran(' | ssuers',' cn=CQur CA, c=SE; cn=Your CA, c=Fl");
var res = webadmni n. PerformAction(' pi nAdmi ni stration');
if (res == 0) {
document. witel n(' Operation successfully performed."');
} else {
document.witeln('Failed to performaction. Error = '+res);

}
</ SCRI PT>
</ HTML>

Mozilla-based browsers

<HTML>
<SCRI PT | anguage="JavaScri pt">
if (navigator.plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m meTypes &&
navi gat or. mi neTypes[" appl i cati on/ x- per sonal webadmi n"]) {
if (navigator.m nmeTypes["application/x-personal -webadm n"]. enabl edPl ugi n) {
docunent.witeln("Plugin installed.");
}
}
}

}
</ SCRI PT>

<OBJECT i d="webadm nl d"
type="appl i cati on/ x- per sonal - webadmni n"
| engt h=0
hei ght =0>

47

Administration Plug-in

</ OBJECT>

<SCRI PT | anguage="JavaScri pt">
var webadm n = docunent. get El ement Byl d(' webadnminl d');
webadmi n. Set Par an(' Pi nOperation','changepin');
webadmi n. Set Paran(' | ssuers',' cn=CQur CA, c=SE; chn=Your CA, c=Fl");
var res = webadmi n. PerformAction(' pi nAdmi ni stration');
if (res == 0) {
docunent. witel n(' Operation successfully performed."');
} else {
document.witeln('Failed to performaction. Error = '+res);

}
</ SCRI PT>
</ HTML>

Error codes

Code Description

General Return Codes

0 OK

8001 Generd error

8002 Operation cancelled by user

8003 Memory error

8004 Invalid parameter

8005 Failed to decode request

8006 Failed to encode request

8007 Failed to convert to/from Unicode
8008 Operation not supported

8009 Token not present

8010 Failed to determine page URL
8011 Server not trusted

8012 Parameter is not Boolean

8013 Incorrect PIN

8022 Plug-in cannot communicate with Personal
PIN Administration Return Codes

8101 PIN policy error

8102 PIN is blocked

8103 PIN is not blocked

8104 Incorrect PUK

Export Return Codes

8201 ‘ Error writing exported token
Import Return Codes

8301 ‘ Failed to import token

Delete Return Codes

8401 ‘Failed to delete token(s)

Renew Polldates Return Codes

8601 ‘Auto—update Manager not present.

48

Administration Plug-in

Configuration

The branding DLL contains the hosts that are allowed to run this plug-in. If no host configuration
exists, all hosts are allowed to run this plug-in.

49

Chapter 7. LogoutTokens Plug-in

Introduction

The LogoutTokens plug-in alows the web server to log out a user from the token once the session
has been completed.

After the user hasfinished the session and logs out from the current web site, theweb server invalidates
the session key by clearing it at the server side. The log out from the server prevents someone else
from creating a new session without entering the PIN again.

The plug-in must be scripted. This means that, after the plug-in has been activated, a script function
must be called in order to log out the user from the token.

Plug-in Activation

The following <OBJECT> tags are used to activate the plug-in in aweb browser:

ClassID B2D171C8-6B69-487D-9267-806486775771 (Windows only)
ProglD Nexus.LogoutCtl (Windows only)
Activation MIME type application/x-personal -logout

Internet Explorer
Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in is implemented as an ActiveX control. It is activated using the
<OBJECT> tag.

Example 7.1. Example of an ActiveX control activation

<OBJECT | D="Logout Tokens"
CLASSI D="CLSI D: B2D171C8- 6B69- 487D- 9267806486775771" >
</ OBJECT>

It is also possible for the web server to use a scripting language to silently detect if the plug-in is
installed in the client.

Example 7.2. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">
try {
var xQbj = new ActiveXbj ect (" Nexus. LogoutCtl");
if(xj) {
docunent. witeln("QObject installed.");

}
} catch (e) {
document. witel n("Object not installed.");

}
</ SCRI PT>

50

LogoutTokens Plug-in

There are no issues with Eolas' patent since the plug-in does not use any parameters.

Mozilla-Based Browsers

In Mozilla-based browsers, the plug-in isimplemented using the NPAPI. It can be activated using the
<OBJECT> tag. It should be noted that thisis done in a different way than for Internet Explorer. The
ClassID is not used to identify the plug-in, but rather the activation MIME type as defined above.

Example 7.3. Example of how to activate the Mozilla-based browsers plug-in
using the <OBJECT> tag

<OBJECT | D="Logout" TYPE="application/x- personal -1 ogout">
</ OBJECT>

A script language can be used by the web server to decide whether the plug-in is installed in the
browser by checking if the activation MIME typeis registered.

Example 7.4. Example of a script to activate the plug-in:

<SCRI PT | anguage="JavaScri pt">
i f (navi gator. plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m meTypes &&
navi gat or. mi neTypes["appl i cati on/ x- personal | ogout"]) {
if (navigator
. m meTypes["appl i cati on/ x- personal -1 ogout "] . enabl edPl ugi n)

{

document.writeln("Plugin installed");

}
}
}

}
</ SCRI PT>

Parameters

The plug-in does not take any parameters.
Scripting
Thefollowing functions are implemented

Logout Tokens i nt Logout Tokens();

Logs out the user from all logged in tokens.

Alwaysreturns O (i.e. successful).

Usage

Theweb server should call this plug-in right beforeit invalidates the SSL session key. Then it will not
be possible to create a new session key, without the user having to enter the PIN again.

51

LogoutTokens Plug-in

The plug-in knowsin which processit isrunning. That isthe same browser process that has |oaded the
CSP (Windows only) or PK CS#11 library and logged in to atoken during the SSL client authentication.

The plug-in then can send this information to the Personal application, which can send an event telling
the appropriate process to log out of its tokens.

However, it cannot tell exactly which token to logout, so al logged in tokens in that process have
to log out. This will not be a problem in most cases, since the browser usually can only handle one
SSL session, and the plug-ins will not be constantly logged in. Thus, no other token should be logged
in, to that process.

Sample Web Pages

This section includes some basic sample pages, showing how to activate the plug-in. For more
extensive samples, see the sample pages package.

Example 7.5. Example of how to Detect and Activate the Plug-in in Internet
Explorer (Windows only)

<HTM>
<SCRI PT | anguage="JavaScri pt">
try {
var xCbj = new ActiveXObj ect (" Nexus. LogoutCtl");
if(xpj) {
docunment.witeln("Coject installed.");
}

docunent.witeln("Coject not installed.");

}
</ SCRI PT>

<OBJECT | D="Logout Tokens"
CLASSI D="CLSI D: B2D171C8- 6B69- 487D- 9267806486775771" >
</ OBJECT>
<SCRI PT | anguage="JavaScri pt">
Logout Tokens. Logout Tokens() ;
</ SCRI PT>
</ HTM.>

52

LogoutTokens Plug-in

Example 7.6. Example of how to Detect and Activate the Plug-in in Mozilla-
based broswers

<HTML>
<SCRI PT | anguage="JavaScri pt">
i f(navigator.plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m neTypes &&
navi gat or. mi neTypes["appl i cati on/ x- personal | ogout"]) {
if (navigator
. m meTypes["appl i cati on/ x- personal -1 ogout"]. enabl edPl ugi n) {
docurment.writeln("Plugin installed");
}
}
}

}
</ SCRI PT>

<OBJECT id="1ogoutld" type="application/x-personal -1 ogout">
</ OBJECT>

<SCRI PT | anguage="JavaScri pt">
var | ogout = docurnent. get El ementByld('logoutld');
| ogout . Logout Tokens() ;
</ SCRI PT>
</ HTM.>

Security Issues

The plug-in might open up for denial-of-service attacks, allowing malicious web content to log out
the user from the currently logged in tokens. However, this requires the user to view the malicious
content in the same process as the one currently logged into using client authenticated SSL. Even if
this would happen, the effect is quite harmless.

53

Chapter 8. Version Plug-in

Introduction

This plug-in is used to retrieve the version of Personal and its installed components.

Plug-in Activation

The following <OBJECT> tags are used to activate the plug-in in aweb browser:

ClassiD E5C324CC-4029-43CA-8D57-4A10480B9016 (Windows
only)

ProglD Nexus.VersionCtl (Windows only)

Activation MIME type application/x-personal-version

Internet Explorer

Note

This section applies to the Windows platform only.

In Internet Explorer, the plug-in isimplemented as an ActiveX control. It can be activated using the
<OBJECT> tag.

Example 8.1. Example of an ActiveX control activation

<OBJECT | D="Per sonal Ver si on"
CLASSI D="CLSI D: E5C324CC- 4029- 43CA- 8D574A10480B9016" >
</ OBJECT>

It is also possible for the web server to use scripting to silently detect if the plug-in is installed in
theclient.

Example 8.2. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">

try {
var xQbj = new ActiveXObj ect (" Nexus. VersionCtl");

if(xj) {
docunent.witeln("Object installed.");

}
} catch (e) {
docunent.witeln("Object not installed.");

}
</ SCRI PT>

If a scripting language is used, we recommend that solution 1 be used. Please refer to “ Appendix A
— Eolas Patent” for more information.

Version Plug-in

Mozilla-Based Browsers

In Mozilla-based browsers, the plug-in isimplemented using the NPAPI. It can be activated using the
<OBJECT> tag. It should be noted that thisis done in a different way than for Internet Explorer. The
ClassID is not used to identify the plug-in, but rather the activation MIME type as defined above.

Example 8.3. Example of how to activate the Mozilla-based browsers plug-in
using the <OBJECT> tag

<OBJECT | D="Versi on" TYPE="application/x- personal -version">
</ OBJECT>

A script language can be used by the web server to decide whether the plug-in is installed in the
browser by checking if the activation MIME type is registered.

Example 8.4. Example of a script to activate the plug-in

<SCRI PT | anguage="JavaScri pt">
i f(navi gator. plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m nmeTypes &&
navi gat or. mi neTypes[" appl i cati on/ x- personal version"]) {
if (navigator.m neTypes["application/x-personal -version"].enabl edPl ugi n)
{
docunment.witeln("Plugin installed");
}
}
}
}

</ SCRI PT>
Parameters

Par ameter Explanation

Post Ur | Setsthe URL to which the plug-in should post its

data. If this parameter is not set, no data will be
posted. An absolute URL isrequired.

Scripting

Thefollowing functions are implemented

Post Ver si on voi d Post Version(postUrl);
String postUrl;
If the plug-in is activated without setting the Post Ur |
parameter in a<PARAM> tag, the plug-in will not post any data.

ThePost Ver si on method can be used to post the version at
alater stage.

55

Version Plug-in

Get Ver si on string GetVersion();

Returns String

Returns the version string without posting it. The format of the
string is described below.

Sample Web Pages

This section includes some basic sample pages, showing how to activate the plug-in. For more
extensive samples, see the sample pages package.

Example 8.5. Example of Direct Activation using Internet Explorer (Windows
only):

<HTM>
<OBJECT | D="Per sonal Ver si on"
CLASSI D="CLSI D: E5C324CC- 4029- 43CA- 8D574A10480B9016" >
<PARAM NAME=' Post URL' VALUE=' http://server.coni post'>
</ OBJECT>
</ HTM.>

Example 8.6. Example of Scripting using Internet Explorer (Windows only)

<HTML>
<SCRI PT | anguage="JavaScri pt">
try {
var xQbj = new ActiveXObj ect (" Nexus. VersionCtl");
if(xj) {
docunent.witeln("Object installed.");

}
} catch (e) {
document.witeln("Object not installed.");

}
</ SCRI PT>
<OBJECT | D="ver si on"

CLASSI D="CLSI D: E5C324CC- 4029- 43CA- 8D57- 4A10480B9016" >

</ OBJECT>
<SCRI PT | anguage="JavaScri pt">

document. writel n(version. GetVersion());
</ SCRI PT>

</ HTM.>

Example 8.7. Examples of Direct Activation using Mozilla-based browsers

<HTML>
<OBJECT | D="Per sonal Versi on" type="application/x-personal -version">
<PARAM NAME=' Post URL' VALUE=' http://server.coni post'>
</ OBJECT>
</ HTM.>

56

Version Plug-in

Example 8.8. Example of Scripting using Mozilla-based browsers

<HTM_>
<SCRI PT | anguage="JavaScri pt">
i f(navigator.plugins) {
if (navigator.plugins.length > 0) {
if (navigator.m nmeTypes &&
navi gat or. mi neTypes[" appl i cati on/ x- personal versi on"]) {
if (navigator.m nmeTypes["application/x-personal -version"].enabl edPl ugi n) {
docunent.witeln("Plugin installed");
}
}
}

}
</ SCRI PT>
<OBJECT | D="versionl d"
TYPE="appl i cati on/ x- per sonal - ver si on"
LENGTH=0
HEI GHT=0>
</ OBJECT>
<SCRI PT | anguage="JavaScri pt">
var version = docunent. get El ementByl d(' versionld');
docunent. writel n(version. Get Version());
</ SCRI PT>
</ HTM.>

Output format

The version plug-in will enumerate all installed components and either send them as aweb form, i.e.
Cont ent - Type: application/ x-ww«for murl encoded, using HTTP Post or make them
available for the Get Ver si on() method.

The body of the post, or the return value of the GetVersion() method may contain the following items.

1. Version of Personal in the format (mandatory)

Per sonal =<ver si on nr>

2. Version of each installed component in the format

<fil e name>_<extensi on>=<versi on
nr>

Multiple modules are separated by " &"

3. The string CSP_I NSTALLED={ TRUE, FALSE}, specifying if the CSP is installed or not.
(Windows only)

4. Smart Card readers available for Personal in the format:

Smar t Car d_Reader =<r eader nane>

If multiplereadersareinstalled, several of these entries are returned. The fields are not to be treated
as case sensitive.

5 Platform
Platformis either wi n32, wi n64, nacosx or | i nux.

6. CS versi on

For platform win32 os_versi on={w n95, w n98, w nne, w nnt,
Wi n2000, wi n2003, w nxp, W nvista, w n7,
unknown}

57

Version Plug-in

For platform macosx 0S_ver si on=<pmj or ver si on>. <m norver si on>
l.e. 10. 4, 10. 5 etc. or unknown.
For platform linux os_versi on=8. 04
Specifying the Ubuntu distribution version.
7. Di stributiondistribution=ubuntu
Specifying the os distribution. (Linux Only)

8. Time when Personal at the latest should do an update check
best bef ore=<val ue of best-before-date>

9. File signing capability of Personal.
docSi gn=1

docSi gn=1 isthe only allowed value if filesigning is supported.

10.Unique hardware identification string.
uhi =<base64 encoded string>

Example 8.9. Example of a version string

Per sonal _exe=4. 10. 0. 33&per si nst _exe=4. 10. 0. 33&Ct est _ng_exe=1. 0. 0. 1& okenapi _d
I'1=4.10. 0. 29&per sonal _dl | =4. 10. 0. 29&np_prsnl _dl | =4. 10. 0. 33& ng_svse_dl | =4. 10.
0. 33&crdsi em dl | =4. 10. 0. 33&crdset ec_dl | =4. 10. 0. 33&crdpri sm dl | =4. 10. 0. 33&br _s
vse_dl | =1. 4. 0. 9&br_enu_dl | =1. 4. 0. 9&br andi ng_dl | =1. 4. 0. 9&CSP_| NSTALLED=TRUE&Pe
rsonal =4. 10. 0. 33&pl at f or mFwi n32&0s_ver si on=wi nxp&best _bef ore=1224740253&docSi
gn=1&uhi =qFFzPs1wl11e0YuJf 08h+yCQer hg=&

58

Chapter 9. Personal PKCS#11

Introduction

This chapter contains information about the PK CS#11 module in Personal.

The interface to Personal PKCS#11 is compatible with Cryptoki (PKCS #11 version v2.20) and
implements a subset of the API as defined in reference [6].

Thismoduleisinstalled in the Mozilla-based browsers in order to enable SSL authentication.

Mozilla Browsers

The Personal PKCS#11 module is automatically registered as a cryptographic module for al found

Mozilla user profiles.

PKCS #11 API

This chapter describes the API functions implemented in the Personal PKCS#11 module. Only the
functions that have been implemented have been detailed below.

General Purpose

Function

Description

Clnitialize

Initializes Cryptoki.

C Finalize

Cleans up miscellaneous Cryptoki functions.

C CGetlInfo

Obtains general information about Cryptoki.

C Get Functi onLi st

Obtainsentry pointsof Cryptoki library functions.

Slot and Token Management

Function

Description

C Get Sl ot Li st

Obtains alist of dotsin the system.

C GetSlotInfo

Obtains information about a particular slot.

C Get Tokenl nfo

Obtains information about a particular token.

C_Get Mechani smLi st

Obtains a list of mechanisms supported by a
token.

C _Get Mechani sm nf o

Obtains information about a particular
mechanism.

C SetPIN

Modifies the PIN of the user that is currently
loggedin.

C Wi t For Sl ot Event

Waitsfor slot event (token insertion, removal etc.)
to occur.

C_Unbl ockPI'N

This function is not member of the PKCS #11
v2.20 specification. It can be used to unblock a
PIN.

59

Personal PKCS#11

Session Management

Function

Description

C _OpensSessi on

Opens a connection or “session” between an
application and a particular token.

C Cl oseSessi on

Closes asession.

C O oseAl | Sessi ons

Closes all sessions with atoken.

C Cet Sessi onl nfo

Obtains information about the session.

C Login Logsinto atoken. Only CKU_USER is supported
for soft tokens.
C Logout Logs out from a token.

Object Management

Function Description
C Create(bj ect Creates a new object.
C _Copybj ect Copies an object, creating a new object for the

copy.

C Destroybj ect

Destroys an object.

C GetAttributeVval ue

Obtains an attribute value of an object.

C Set Attri but eval ue

Modifies the value of one or more attributes of an
object.

C FindObj ectslnit

Initializes an object search operation.

C Fi ndObj ect s

Continues an object search operation.

C_Fi ndObj ect sFi nal

Finishes an object search operation.

Encryption and Decryption

Function

Description

C EncryptlInit

Initializes an encryption operation.

C_Encrypt

Encrypts single-part data.

C_Encrypt Updat e

Continues a multiple-part encryption operation.

C Encrypt Fi nal

Finishes a multiple-part encryption operation.

C Decryptlnit

Initializes a decryption operation.

C Decrypt

Decrypts single-part encrypted data.

C_Decrypt Updat e

Continues a multiple-part decryption operation.

C Decrypt Fi nal

Finishes a multiple-part decryption operation.

Message Digesting

Function Description
C Digestlnit Initializes a message — digesting operation.
C Digest Digests datain asingle part.

C Di gest Updat e

Continues a multiple-part digesting operation.

C _Di gest Fi nal

Finishes a multiple-part digesting operation.

60

Personal PKCS#11

Signing and Verifying

Function Description

C Signlnit Initializes a signature operation.

C Sign Signs single part data.

C_Si gnUpdat e Continues a multiple-part signing operation.
C_Si gnFi nal Finishes a multiple-part signing operation.

C _Si gnRecoverl ni t

Initializes a signature operation, where the data
can be recovered from the signature.

C_Si gnRecover

Signs single-part data, where the data can be
recovered from the signature.

C Verifylnit

Initializes a verification operation.

C Verify

Verifies asignature on single-part data.

C VerifyRecoverlnit

Initializes a verification operation where the data
is recovered from the signature.

C VerifyRecover

Verifies single-part data, where the data can be
recovered from the signature.

Key Management

Function

Description

C Gener at eKeyPai r

Generates a public/private key pair, creating new
key objects.

C_W apKey

Wraps (i.e. encrypts) akey.

C_Unwr apKey

Unwraps (i.e. decrypts) awrapped key, creating a
new private key or secret key object.

Random Number Generation

Function

Description

C SeedRandom

Mixes additional seed material into the token's
random number generator.

C Gener at eRandom

Generates random or pseudo- random data.

Interoperability

The PKCS#11 v2.20 specification isthe compl ete documentation of the API implemented by Personal
PKCS#11. This section only describes exceptions from PKCS #11 specification.

C Get Sl ot Li st ()

Each physical smart card token will, by default, be shown as

two virtual tokensto allow multiple PIN codes on asmart card.
If only one PIN isavailable, then the second slot will be empty.

C Logi n()

C FindQbjectslnit()

Only CKU_USER is supported for software tokens.

Areturnvalueisadded: CKR_TEMPLATE_INCONSISTENT

C Decrypt Updat e() A return value is added:

CKR_FUNCTION_NOT_PERMITTED

61

Personal PKCS#11

C _Encrypt Updat e() A return value is added:
CKR_FUNCTION_NOT_PERMITTED

C _Unbl ockPI N() This function is not member of the PKCS #11 v2.20
specification. It can be used to unblock alocked PIN.

CK_RV C_Unbl ockPI N(CK_SESSI ON_HANDLE hSessi on,
CK_CHAR_PTR pPi n,
CK_ULONG ul Pi nLen,
CK_CHAR_PTR pPuk,
CK_ULONG ul PukLen) ;

hSessi on isan ordinary session handle.

pPi n should point to a buffer containing the PIN. It depends
on the token whether this should be the old PIN or a new PIN.

pPuk isa pointer to the unblocking code.

PKCS#11 Configuration

It is possible to configure the PKCS#11 to customer specific needs. See “ Appendix D — CSP and
PKCS#11 Configuring”.

62

Chapter 10. Personal CSP

Introduction

CSP

CSP

Note

This chapter appliesto the Windows platform only.
This chapter contains information about the CSP module in Personal.
The CSP component of Personal implements a Microsoft CSP (Cryptographic Service Provider).

Any application using M SCAPI can automatically accessthe smart card and smart card reader support
of Personal. Some examples of applications using this API are WinLogon, Microsoft Office 2003
(and later), Internet Explorer, and various VPN clients. The Microsoft ActiveX control XEnroll isalso
using thisAPI.

Information

Personal CSP has the following characteristics:

Provider type PROV_RSA_FULL
Provider name Personal CSP
Functions

This chapter describes the functions implemented in Personal CSP.

A detailed description of the various Microsoft CryptoAPI functions can be found at the MSDN
Library, seereference[6].

Section “Interoperability " specifies any deviations in the Personal CSP implementation.

CSP Connection

Function Description

CPAcqui r eCont ext Acquiresahandletoakey container inaparticular
CSP.

CPCet Pr ovPar am Retrieves attributes from Personal CSP.

CPRel easeCont ext Releases the handle acquired by the
CryptAcquireContext function.

CPSet Pr ovPar am Specifies attributes of a CSP.

Key Management

Function Description

CPDest r oyKey Destroys or releases a handle to a key.

CPEXxport Key Transfers a key from the CSP to akey BLOB in
the application's memory space.

CPGenKey Generates arandom key.

CPGet User Key Gets a handle to the key exchange or signature
key.

63

Personal CSP

Function Description

CPCGenRandom Generates random data.

CPGet KeyPar am Retrieves the parameters of akey.

CPI npor t Key Transfers akey from akey BLOB to a CSP.
CPSet KeyPar am Specifies the parameters of akey.

Hashing and Digital Signatures

Function Description
CPCr eat eHash Creates an empty hash object.
CPGet HashPar am Retrieves a hash object parameter.
CPHashDat a Hashes ablock of dataand adds it to the specified
hash object.
CPSet HashPar am Sets a hash object parameter.
CPSi gnHash Signs the specified hash object.
Encryption
Function Description
CPDecr ypt Decrypts a section of plaintext by using the
specified encryption key.
Interoperability
CPAcqui r eCont ext () The flags CRYPT_VERI FYCONTEXT, CRYPT_SI LENT,

CRYPT_DELETEKEYSET, and CRYPT_NEWKEYSET are
supported. The flag CRYPT_MACHI NE_KEYSET isignored.

If this method is called with container parameter = NULL, the
default key container will be used. The default key container
in the configuration file will be used if specified, otherwise,
CSP will try to create a context according to the following
principles:

1. Usethefirst card reader having a smart card inserted.
2. Usethefirst card reader without a card.

3. A context will be created like if CPAcqui r eCont ext is
called with the flag CRYPT_VERI FYCONTEXT.

Personal supports the following types of container names:

e Card reader containers using the Microsofts format: \ \ .
\ <reader _nane>\.

Example:\\ .\ Genpl us USB Snart Card Reader
0\.

A container representing acertificate. The container nameis
then the SHA-1 hash of the certificate.

Example:
90C75B312BEE4F8117EA90EDC7F8F395314ECFEA

Personal CSP

CPGet Pr ovPar am()

CPSet Pr ovPar am()

CPExport Key()

CPGenKey/()

» Other supported container names, described in “Container
Name”, are

e GUID (Globally Unique I Dentifier)

e \\.\<reader>\<id> and \\.\<reader>
\ Ox<i d>

The query PP_KEYSET_SEC DESCR is not supported.

If a CSP function returns NTE_FAIL, it is possible to call
CryptGetProvParam with dwParam=PP_NX_LAST_ERROR
in order to get amore detail ed explanation of the error situation.

PP_NX_LAST_ERRCR 0x80000001

The following error codes are defined:

ERROR_NX_UNDEFI NED |0x80007000
ERROR_NX_PI N_I NCORRE@Ix80007001
ERROR NX_PI N_BLOCKED|0x80007002

For each call to a CSP API function, the error code is reset to
ERROR_NX_UNDEFI NED.

Note

The error codes are set per thread. If several threads
are running, it is only the one that got NTE_FAIL in
return from CSP that can call CryptGetProvParam to
get PP_NX_LAST_ERROR.

Parameter PP_NX_CONTEXT_FLAGS can be used to get
more information about the token.

NX_FLAG_I—N\LTOkEkxDOOOOOOl <text>Smart card
token</text>

NX_FLAG HAS PROINGOI@EDOARTH PAEH>PIN-Pad
reader</text>

NX_FLAG_TOKEN | GEMIMAB0E4 <text>Token on
removable media</
text>

NX_FLAG TOKEN | PRESENIO08 <text>Token is
available</text>

Parameter PP_KEYSET_SEC DESCR is not
supported. Additional supported parameters
are: PP_KEYEXCHANGE_PIN (value 32 and
PP_SI GNATURE_PI N (value 33).

pbDat a should point to a string containing the PIN.

OPAQUEKEYBLOB and PRI VATEKEYBLOB are not
supported.

If algorithm identifier AT_KEYEXCHANGE or
AT _SI GNATURE is used, the flag

65

Personal CSP

CPGet KeyPar am()

CPI mpor t Key()

CPSet KeyPar am()

CPCr eat eHash()

CPHashDat a()
CPSet HashPar am()
CPSi gnHash()

Additional Comments

CRYPT_USER PROTECTED has to be set. The flag
CRYPT_EXPORTABLE must not be set. Supported key lengths
are 512, 768, 1024, and 2048 bits.

Additional parameter value supported is KP_CERTIFICATE
(value 26), which, if successful, will return a certificate
associated with the key.

Supported key BLOB types are PUBLI CKEYBLOB,
S| MPLEBL OB and PRI VATEKEYBL CB.

Additional parameter value supported is KP_CERTIFICATE
(value 26).

When using this parameter, a certificate is stored on the token
having the key associated with this certificate.

Supported mechanisms are CALG _SSL3 SHAMDS,
CALG_MD5 and CALG_SHAL.

CRYPT_USERDATA is not supported.
Supported parameter is HP_ HASHVAL.

The flag CRYPT_NOHASHOID is supported for all tokens
that support RSA with PKCS#1 padding. All soft tokens
support this, and the requirement for cards is that no hash OID
is added to the data that is signed.

The Personal application (personal.exe) moves the certificates from the smart card or the software
token to M S Cert Store, where they can be accessed by e.g. Internet Explorer.

Using XEnroll with Personal CSP

XEnroll, whichisan ActiveX component from Microsoft, can be used with Personal CSPfor certificate
enrollment. ICEnroll is aset of interfaces used with XEnroll.

The XEnroll interface has a property, UseExistingK eySet, which should be set to TRUE if secondary
certificates are to be issued. If the property is set to FALSE, new keys should always be generated.

In XEnrall, the container name is set by the property ContainerName.

Container Name

Container name can be specified in various ways:

1. Blank container name
2. Card reader name

3. Card reader name and ID

4. One, by Personal unknown, container name

Blank container name

If ablank container name is set, the default container will be selected. The default container is the
first card reader (with an inserted smart card) detected by the CSP. If no card isinserted, thefirst card

66

Personal CSP

reader detected will be selected. XEnroll will call the CSP with an autogenerated container name in
GUID format, e.g., 857b6eeh-5f4c-4edb-b87e-07h883¢c205d3.

If akey isto be generated when the request is created, it is only possible to generate one key of each
sort,i.e.oneAT_KEYEXCHANGE andone AT_SIGNATURE. Thereasonisthat thekey ID isbased
on the container name and has to be unique for akey pair on the token.

Card reader name

A card reader name should have the format
\\.\<reader name>\

Example:
\\.\Genplus USB Snart Card Reader O\

If akey isto be generated when the request is created, it is only possible to generate one key of each
sort,i.e.one AT_KEYEXCHANGE andone AT_SIGNATURE. Thereasonisthat thekey ID isbased
on the container name and has to be unique for akey pair on the token.

Card reader name and ID

Use one of the following formats:
\\.\<reader name>\<id>

or
\\.\ <reader name>\0x<id>

Example 1:

\\.\Gemplus USB SmartCard Reader O\1

In this case ID will be 0x31.

Example 2;

\\\Gemplus USB SmartCard Reader 0\0x55
In this case ID will be 0x55.

When thisformat isused, it is possibleto control for which key a certificate should be issued. If option
key generation is selected, the key 1D will be the ID of the container name. If an existing key is used,
its ID should be known.

If thisformat is used, and a card reader, unknown to Personal, is specified, the defualt container will
be used and a key pair with the given 1D will be searched for or created.

Unknown container name

Create new key set If the CSP does not find a key/token with the specified

(UseExistingK ey Set=0) container name, the default container will be selected.
Unknown container name means that the format does not
comply with the possible ones (see “ CPAcquireContext”)

Use existing key set If the key/token is not found, the CSP will return an error code.
(UseExistingKeySet=1)

Example

This example contains an HTML page using XEnroll. An authentication key is generated and a
certificate is requested for that key.

67

Personal CSP

<HTML>
<OBJECT NAME="XEnrol | Coj ect"
CLASSI D="CLSI D: 127698e4- e730- 4e5c- a2b1- 21490a70c8al" >
</ OBJECT>

<SCRI PT Language="Javascri pt">
functi on doRequest () {

var enrol |l ment = docunent. XEnrol | Obj ect;
enrol | ment. Provi der Type= ' 1'
enrol | ment. Provi der Name= ' Personal CSP'
enrol | ment. UseExi sti ngkeySet= "0’
enrol | ment. GenKeyFl ags= "' 2'
enrol | ment. Cont ai ner Nane= "\\\\.\\ Genpl us GenPC430 0\\ 0x22'
enrol | ment . HashAl gori t hne ' SHAL'
enrol | ment . KeySpec= "'1'
documnent . Order. pkcs10. val ue = enrol I ment. Creat ePKCS10(" CN=cni', "")
docunent . Order. submi t () ;

</ SCRI PT>
<FORM NAME="Or der "
ACTI ON="/ servl et/ XEnrol | "
ENCTYPE=x- ww\ f or m encoded
METHOD=" POST" >
<I NPUT TYPE="hi dden"
NAMVE=" pkcs10"
VALUE="" >
<I NPUT TYPE="hi dden"
NAME=" Pr ocess"
VALUE="or der" >
<I NPUT TYPE="hi dden"
NAME=" Response"
VALUE="or der / exp" >
<TABLE BORDER=1 CELLPADDI NG=6 BGCOLOR="#CCCCCC"' >

<TR>
<TD>
Fi rst Nane</ B>
</ TD>
<TD>
<I NPUT NAME="fir st nane"
TYPE="t ext "
S| ZE=" 30" >
</ TD>
</ TR>
<TR>
<TD>
Last Nane</ B>
</ TD>
<TD>
<I NPUT NAME="I| ast nane"
TYPE="t ext "
S| ZE=" 30" >
</ TD>
</ TR>
</ TABLE>

<I NPUT TYPE="button"
NAME=" Submi t App"
VALUE="Submi t Application”
ond i ck="doRequest ()" >
</ FORM>
</ HTM.>

CSP Configuration

Itispossibleto configurethe CSPto customer specific needs. See“ Appendix D — CSPand PK CS#11
Configuring”.

68

Chapter 11. Installation on Windows

Program Requirements

The overall goals for the packaging and distribution of Personal are as follows:

* Instalation should be a"one-click" procedure.

» Keep it small and adapted to large web-based installations.

 Support for pushing out installations/upgrades to users within an organization.

In order to reach these goals, a dedicated installation program performs the various aspects of
the installation. Furthermore, the installation is packaged into browser specific packages for easy

installation from web-based environments. The installation also manages PKCS#11, CSP, ActiveX,
and plug-in installation.

The Installation Program

The installation program is a standard Windows executable. All the filesto be installed are packaged
into the executable per si nst . exe.

Packaging
Theinstallation program persinst.exe is packaged for four different distributions.
» A signed CAB filefor installation in Internet Explorer.

* An XPI filefor installation in Mozilla-based web browsers.

» An EXE file created using the |Express packager for traditiona distribution. The EXE fileis signed
and compressed.

» A copy of per si nst. exe, which can be used when building customer specific packets based
on Personal.

Installation Conditions

Installation and uninstallation of Persona is performed by the program per si nst. exe. The
behavior of the program is controlled by parameters in the optional file per si nst . cf g, which
must be stored in the same directory. A default installation will take place if no per si nst. cfgis
available. Inaddition, if afilenamed per sonal . cf g existsinthesamedirectory, it will also replace
the shipped per sonal . cf g located in PersonalInstall (see below) during the installation.

per si nst . cf g enables an organisation to customize the install ation process to suit specia needs.

per sonal . cf g enables an organisation to provide settings that will make Personal behave in a
predetermined way.

Note

Thedelivered file per sonal . cf g isasample configuration file containing all parameters
not described elsewhere. See the well commented file, for detailed information.

69

Installation on Windows

By default, “master copies’ of the program and configuration files are stored in Personallnstall
\bin, a location defined by the registry key HKEY_ LOCAL_MACHI NE\ Sof t war e\ Per sonal
\ <ver si on>\ Personal I nstal | .(Normaly C:\Program Files\Personal).

When a user starts Personal, a private configuration file is stored in PersonalHome\config, alocation
defined by the registry key HKEY_ CURRENT_ USER\ Sof t war e\ Per sonal \ <ver si on>
\ Personal Hone . (Normaly C:\Documents and Settings\<user_name>\Application Data
\Personal.)

Each time a user starts Personal, acheck is made against InstallUid in the registry to seeif the master
copy has been updated. If so, the user’s private copy of the configuration file per sonal . cf g will
be merged with any new settings from the master copy.

Anexampleof per sonal . cf g isshipped with the product. Usethisfileto find out what parameters
can be set.

Installation Configuration

All parametersin per si nst . cf g are well commented and therefore not described in detail in this
document. The following options exist:

» Todisplay amessage or open a URL after a successful installation.

e To usethe Event log for logging.

» To perform asilent or non-silent installation.

» To specify the questions and answers to be asked by the installation program.

» Todisplay reference number in error messages.

» To specify if Persona should be added to Add/Remove programs in the Control Panel.

» To add additional filesto the installation package.

Installation Options

Aninstallation can be silent, i.e., no user action is required. The installation program can perform the
following actions:

o Install - install current version of Personal.
* Reinstall - install current version of Personal without uninstalling any existing version.
» Upgrade - uninstall older version of Personal and install current version.

» Modular upgrade - is only able to upgrade the same version. It can be used to install selectivefiles.
As an example, this option, which requires a specia build of per si nst . exe, could be useful
when distributing components related to a specific language within an organization, configuration
updates, or extended smart card support.

e Uninstall - uninstall Personal either using the Add/Remove program function in the
Control Panel or the command per si nst. exe -u in the location defined by the registry
key HKEY_ LOCAL_MACHI NE\ Sof t war e\ Per sonal \ <ver si on>\ Per sonal I nst al |
\bin

Messages from the Installation Program

Personal installs shortcuts in the Programs menu. The following shortcuts are installed:

70

Installation on Windows

» Persond
» Persona Guide

Personal also installs a shortcut to the executable under the startup menu so that Personal will start
when logging into the machine.

Shortcuts

Personal installs shortcutsin the Programs menu. The following shortcuts are installed:
* Personal
* Personal Guide

Personal also installs a shortcut to the executable under the startup menu so that Personal will start
when logging into the machine.

Installation Directory Tree

At the time of the instalation, the hin, config, and doc directories are created under the
Personal I nstal | key.

The config and store directories are created under the PersonalHome key, when Personal is started the
first time. In addition, a directory cache is created when Personal is using a smart card token.

bin The bin directory contains all executables and shared libraries
used by Personal. It aso contains the signature files for the
signed files.

config The config directory contains the client configuration file

personal . cfg.

doc The doc directory contains the end user help files for all
supported languages.

store The store directory contains the internal software token store.

Web Installation Flowchart

When distributing and installing Personal from aweb environment, the following flowchart should be
used in order to check if thereis a Personal installed and which version resides on the machine.

71

Installation on Windows

Figure11.1. Web Installation Flowchart

1.1 5erd bronger = pecifid
tags totigger » 1.2 Iretdldion
irctal ation

Moo

2 Wersion plugin
Mersion sufficient?,

2 Htat eing Persond
[l ebesigner abe)

1. Check if the version plug-in is present. This is a browser specific operation which isillustrated in
the sample JavaScript below. Note that the <OBJECT> tag is used without the code base so that the
plug-in is not downloaded if it is not found.

72

Installation on Windows

Example 11.1.

function testForBrowser() {
var pattern = /netscape/i;
if (pattern.test(navigator.appNane)) {
br owser | sNet scape = true;
}
pattern = /mcrosoft/i;
if(pattern.test(navigator.appNane)) {
browserl sl E = true;
}

}

function testForVersionPlugin() {
if (browserlslE) {

try {
ver si onPl ugi nCbj ect = new Acti veXCbj ect (" Nexus. VersionCt|");
versionPluginlnstalled = (null != versionPl ugi nCbj ect);

} catch(e) {
ver si onPl ugi nCbj ect = null;

}
if (browserlsNetscape) {
if (navigator.m nmeTypes["application/x-personal -version"] != null &&
navi gat or. mi neTypes["appl i cati on/ x- personal -version"]. enabl edPlugin !'= null) {

ver si onPl ugi nObj ect = nul | ;
versi onPl ugi nl nstal |l ed = navi gat or. nm neTypes["appl i cati on/ x- per sonal -ver si on"] . enabl edPl ugi n;
}
}
}

t est For Browser () ;
if (browserlsNetscape) {
docurent .. write(' <OBJECT id="versionld" type="application/x-personal -version"></ OBJECT>');
} elseif (browserlslE) {
docunent . write(' <OBJECT id="versionld" CLSID="E5C324CC- 4029- 43CA- 8D57- 4A10480B9016" ></ OBJECT>') ;
}

t est For Ver si onPl ugi n()

1.1 Sends the tags that trigger the download of the Persona installation. Again this is browser
specific, and isillustrated with some sample JavaScripts below. In this step, we use browser specific
instantiation of the plug-in object which downloads and installs the CAB or XPI files respectively.

Example 11.2.

function installPlugin() {
var result = fal se;
if (browserlsNetscape) {
xpi ={' Personal Signature and Authentication Cient':"'persinst.xpi'};
Install Trigger.install (xpi);
Install.refreshPl ugins();
result = true;

if (browserlslE) {
docurnent. write(' <object classid="CLSID: 659D6946-87C7- 49a8- BCBA- 7579CC223C2A" CODEBASE=persi nst.c
docunent.write(' </object>\n");
result = true;

}

return result;

}

Note

The classid aboveisnot that of an existing product, and therefore, it will force an installation
of the CAB file.

73

Installation on Windows

1.2 Personal will beinstalled locally. Thisishandled entirely by the installation program persinst.exe.
The user can be sent back to step 1.

2. Retrieves the version from the version plug-in. (Refer to “Version Plug-in” on page 81 for more
information.) If the Personal version isolder than the version on the web page, go to step 1.1 to update
to the new version.

3. Persondl is installed and the version is sufficient which means that we can proceed and use the
Personal plug-ins to enroll and make digital signatures etc.

Limitations

Due to limitations in some browsers, (see release.txt for more information), it is necessary to take
precautions when designing the web pages. First it is necessary to check the UserAgent string to see
if the current browser has such a limitation. This is done by calling a special page. The following
example of a JavaScript shows a simple test:

Example 11.3.

<script | anguage="Javascript">
if (! versionPluginlnstalled())

{
if (YinstallPlugin())

fail Xpilnstall PatternFF=/Firefox./i;
fail Xpil nstal | PatternNS=/ Net scape. 7. 2/ ;
if (failXpilnstallPatternFF.test(navigator.userAgent) || fail XpilnstallPatternNS.test navigator.

{

wi ndow. | ocati on="i ndex_ns. htm";

}

el se

wi ndow. | ocation="install_cancel.htm"';

}
}
}

</script>

The page to be called could look like the following:

Example 11.4.

<htm >
<head>
<nmeta http-equi v=Content-Type content="text/html; charset=i so-8859-1">
<META HTTP- EQUI V="Pr agma" CONTENT="no- cache" ></ META>
<title>Personal NG test site</title>
</ head>
Installation for Netscape 7.2 and Firefox 1.* users
</ body>
</htm >

CSP & PKCS#11

Theinstallation always copies and registersthe file personal .dll which containsthe PK CS#11 and CSP
APIsinto the Personal Home/bin directory. If the user has a Mozilla-based web browser installed, the
DLL isinstalled in the browser as a PK CS#11 module.

74

Installation on Windows

Plug-ins and ActiveX Controls

The ingtallation always copies the file np_prsnl . dl | to the Personallnstall\bin directory. The
np_prsnl . dl | filecontainsal plug-insand ActiveX objects.

Both plug-ins and ActiveX objects are registered directly to the file under the PersonalInstall\bin
directory.

Upgrade and Migration

It is possible to upgrade from older versions of Personal to the current version.

Note

The installation program will not uninstall iD2 or SmartTrust versions of Personal but it is
possible to migrate soft tokens from those versions to Personal.

Uninstall

Personal is uninstalled through the Add/Remove programs buttons or optionally by
executing the UninstallString defined by the registry key HKEY_LOCAL_MACH NE
\ Sof t war e\ M cr osof t\ W ndows\ Cur r ent Ver si on\ Uni nst al | \ Per sonal . If files
are locked during uninstallation, the instalation program will install itself into
the location specified by HKEY_CURRENT_USER\ Sof t war e\ M cr osof t \ W ndows
\ Cur r ent Ver si on\ RunOnce and remove the locked files at next reboot.

Controlling the Behavior of Winlogon

In Windows XP, the Windows system process winlogon.exe is, by default, configured to read
certificates stored on an inserted smart card and put them in the Microsoft Certificate Store.

Personal does the same kind of storing. There is a race condition between winlogon.exe and the
Personal application, both storing the same certificatesin the Certificate Store. If winlogon.exe writes
the certificates after Personal, some certificate attributes (created by Personal) will be overwritten and
Personal will not be able to act properly in some application-specific situations.

However, by changing some Microsoft specific registry settings, it is possible to control the behavior
of winlogon.exe.

Therefore, the Personal installation program configures winlogon.exe not to write certificates to the
Certificate Store. It also stores abackup of the original configuration in the Personal specific registry,
so it can restore the original winlogon.exe configuration if Personal is uninstalled.

The Personal installation program uses this possibility when installing and uninstalling Personal in
order to get rid of the described problem.

In Windows Vista, Windows 7 and Windows Server 2008, the Windows function which transfer
certificates from a smart card to Microsoft Certificate Store is implemented through domain policies
instead. In these environments, the Personal installation program does not take any action to prohibit
the Windows behavior and thus the resulting contents of Microdoft Certificate Storeit isindeterminate
with respect to the certificates on the smart card at hand.

Event Log and Return Codes

Event ID/RC Text
2000 %1 %2 successfully installed.

75

Installation on Windows

Event ID/RC Text

2001 Operating system version, not supported by
installation program.

2002 Installation program requires administrator
privileges.

2003 Uninstallation program requires administrator
privileges.

2004 A newer version of %1 exists.

2005 Upgrade of %1 declined.

2006 Reinstall of %1 declined.

2007 Upgrade started.

2008 Upgrade failed.

2009 Uninstallation started.

2010 Current installation of %1 cannot be upgraded
to current version (%2). Uninstall it and run this
installation program again.

2011 Uninstallation started, no installation to uninstall.

2012 Installation started with unknown arguments.

2013 Installation of %1 is already running.

2014 Failure communicating with operating system.

2015 Out of memory.

2016 Failed to create installation directory.

2017 Failed using temporary directory for installation.

2018 Modular upgrade installation does not support
switch given to modular upgrade program.

2019 Modular upgrade successfully performed.

2020 Modular upgrade requires administrator
privileges.

2021 %1 not installed, modular upgrade cannot be
performed.

2022 Modular upgrade of %1 declined.

2023 Modular upgrade of %1 denied. Installed version
of %1 was not %2.

2024 Uninstallation of %1 successful.

2025 Uninstallation of %1 successful. Reboot needed.

2026 Installation could not proceed due to problems
regarding an existing installation.

2027 Modular upgrade could not proceed due to
problems regarding an existing installation.

2028 Operating system version no longer supported by
installation program.

2029 Installation could not proceed since a Persona
version withincompatible classificationisalready
installed on the system.

4000 Installation of %2 failed. Contact support.

76

Installation on Windows

Note

Note: %1 is replaced by product name and %2 is replaced by program version.

77

Chapter 12. Installation on Macintosh

Introduction

Personal is distributed via a so called disk image file (.dmg), which is opened automatically after
downloading into e.g. Safari or Mozilla.

Install

To install Personal, drag and drop Personal.app to the hard drive, e.g. to the desktop or to alocation
under / Appl i cati ons.

The installation will be completed when Personal is started the first time. A few messages will be
displayed and the user will be informed when the disk image file is opened.

In addition, the following actions are taken:

» PersonaPlugin.bundle (containing the browser plugin) is copied to the users plugin folder ~/
Library/Internet Plug-Ins

The PKCS#11 module, tokenapi.framework, isinstalled in the browser.

A folder to store Internal Store is created under ~/Library/Application Support/se.nexus.Personal

» Based on a sample file in Personal.app, an active configuration file is created in ~/Library/
Preferences/se.nexus.Personal .cfg

» Temporary files are stored under ~/Library/Caches/se.nexus.Personal

Uninstall

When the user selects Uninstall from the Application menu, Personal will be uninstalled and the
following files will be deleted:

» ~/Library/Preferences/se.nexus.Personal.cfg
» ~/Library/Internet Plug-1ns/PersonaPlugin.bundle

» ~/Library/Caches/se.nexus.Personal

78

Chapter 13. Installation on Linux

Introduction

The instalation program consist of a compressed tar file named
personal<VERSION_NUMBER>.tar.gz.

Install

To install Personal, you need to run the Linux command tar to unpack the installation program and
then run theinstallation script i nst al | . sh asroot with the parameter i :

sudo personal - <VERSI ON_NR>/ i nst al | <VERSI ON_NR>. sh

The installation script will perform the following steps:

» All application files, dynamic libraries, |language packages, master configuration file, icons and etc
areplaced under / usr/ 1 ocal / |'i b/ per sonal .

» Soft linksto the dynamic librariesare created in/ usr /| ocal /1 i b.

 Soft link to the Firefox plug-in library is placed under the designated plug-ins library location for
the respective versions of Firefox supported.

» Soft links to the application startup script, personal.sh and persadm.sh, are placed under / usr/
| ocal / bi n/ per sonal .

» The Nexus Personal Desktop configuration file personal.desktop is placed under / usr/ shar e/
appl i cat i ons. Thismakesthe Personal main application accessiblefromthe Applicationsmenu
on the Desktop.

e The/usr/local/libdirectory isaddedtothe/ et c/ | d. so. conf.
If any of the above fails, the installation will end with an error message.

If Personal is configured to register the PK CS#11 modulein Firefox browser it will be done each time
Personal starts. To get Personal working with proxy settings, read the commentsin the script /usr/local/
lib/personal/personal.sh how to manually change the proxy environment variables. Thisisrelevant for
the parameter TokenRemovedURL in the authentication Plug-in if proxy settings are needed to be set.

Uninstall

To uninstall Personal, run the installation script (under / usr/ 1 ocal /| i b/ per sonal)

install.sh

Thiswill remove dl filesinstalled by the installation program.

Note that the user data located under the directory . per sonal in each user’s home directory is not
removed.

If the PKCS#11 module isregistered in Firefox browser, it has to be manually removed.

79

Chapter 14. Installation on Citrix

Introduction

Nexus Personal isvalidated on a Citrix environment based on Citrix Xenapp 6 on Windows 2008 R2,
and ICA Client 10 on Windows 7. Citrix supports the use of PC/SC-based cryptographic smart cards,
which is the smartcard communication protocol used by Personal.

Install

On such environments, Personal is installed on the server, following regular “ Installation on
Windows’ instructions. There is off-course no need to install it on the client workstation. The pre-
requisites for thiswill be:

 Activation of smartcard relay in MSTSC (options, local resources, other) [CC note, to be verified]

» Having arunning smartcard reader on the workstation
Note

The smartcard reader must be attached before launching the ICA session. When the reader
is attached after the ICA session is launched, users must disconnect and relaunch the ICA
session to use the smart card inside the session (Refer to http://support.citrix.com/article/
CTX132230 for details)

Nexus do not provide dedicated support for Citrix. More information can be found on
Citrix support web site: http://support.citrix.com/proddocs/topic/xenapp6-w2k8-admin/ps-
securing-use-smt-crdw-cps.html

80

Chapter 15. Administration

Personal GUI

The User Interface for Personal is used to view and administrate token properties and certificates. The
full User Interface is described in this chapter. In summary, the User Interface can be used for the
following tasks:

1. Viewing certificates.

2. Viewing tokens.

3. Changing PIN codes.

4. Importing external software tokens.

5. Exporting software tokens to externa files.

6. Setting the paths to external PKCS #12 files stored on various media.

7. Changing the settings for web browser integration.

Administration GUI

Personal provides a GUI that is used for administration of the tokens, web browsers, languages and
other settings. The administration functions are available in the main application window which can
be launched from either Start -> Programs -> Personal <version number> -> Personal, by double-
clicking on the Personal tray icon, or by selecting Open command after right-clicking the tray icon.

Figure 15.1. Administration GUI

| # Nexus Personal g@@

File Miew Token Help

D@ L

[rpurt FIM Expart

(a (@&

buT oken signtoken

- |
Nexus Personal t 2l

The main application window can either be displayed in minimized mode where only the task buttons
are shown, or in advanced mode where even the tokens are shown. The re-sizing is made either with
the button in the lower right corner, or using the command Show tokensin the View menu.

Further, the available tokens can be displayed as small or large sized icons. Small icons are displayed
when the command Detailed list is selected from the View menu, and large icons when the command
Largeiconsis selected.

81

Administration

Import and Export

When importing and exporting soft tokens, wizards are launched to guide the user through the process.
Soft tokens in PKCS #12 files can be imported to or exported from the Internal Store.

Internal Store

The purpose of having an Internal Store is to prevent attacks where the PKCS #12 file is copied
by a virus, trojan horse or downloaded from a shared disk. As the PKCS #12 may be protected
by a simple password, it could then be broken by a dictionary attack. The Internal Store adds a
secondary encryption layer, based on the user'slogon credential (pleaserefer to* Appendix C - Internal
Stores” for further details), thus making dictionary attacks more difficult. In order for Personal to be
interoperable with other products, it allows import and export of standard PKCS#12 filesto and from
the Internal Store.

Import Soft Tokens

By using the Import wizard, the PKCS #12 file can be imported into the Internal Store, where
the private key is protected by Microsoft Windows Data Protection. The CryptoAPI function
CryptProtectData is used to protect the private key. CryptProtectData is used in user mode, meaning
that the protection is bound to the user's profile instead of the hardware (please refer to “ Appendix C
- Internal Stores” for further details). The Import wizard is either started with the Import button in the
main application window or from the Import command in the File menu.

Figure 15.2. Import Soft Tokens

Mexus Personal - Import Wizard

Import
Select the token to be imported.

The token to import is stored ok a hard drive, floppe digk or anaother removable
device. WWhen the import iz finizhed, the token will be stored and protected by
Mexus Personal.

FEile: | Browse. ..

82

Administration

Export Soft Tokens

When the Export wizard is used, a protected soft token can be exported into astandard PK CS#12 file.
The Export wizard is either started with the Export button in the main application window or from
the Export command in the File menu.

Figure 15.3. Export Soft Tokens

Mexus Personal - Export Wizard

Export token to a file
The electranic identity token will be exparted ta a file,

Specity the file and and enter the PIM code of the electronic identity token.

kT aken

Enter the filename or browse ta the file in which to store the electranic identity token.

Filename: |] Browse...

BN

Managing PIN Codes

In order to manage the PIN codes of a token, a wizard is launched to allow for either changing or
unblocking the PIN code. The unblocking feature is by definition only available for smart cards.

83

Administration

Figure 15.4. Managing PIN Codes

Mexus Personal - PIM Management Wizard

Change PIN
To change the PIM, the curent PIM must be entered together with the new PIN.

My Token
FIN

Enter the current PIM and the new PIN. The new PIN must be
canfirmed.

Current BIM: || |

New PIN: [|

Confirrn e PIM: | |

Hest »][Cancel

The PIN Management Wizard is started with the PIN button in the main application window, from
the PIN management command in the File menu, or by right-clicking on an imported soft token and
selecting the PIN management command.

Searching for Soft Token

Personal provides functions for mounting drives or directories with stored PKCS #12 files. This
feature is available by selecting Preferencesin the View menu. In the Preferences window, select the
Electronic Identity Token Search tab.

Administration

Web

Figure 15.5. Searching for Soft Token

Mexus Personal - Preferences

‘wieb Browszer andLanguage | Advanced | Card Readers
Electranic Identity Taken Search

Search Path to Electronic [dentity Taokens

Memuz Personal can find and wse electronic identity tokens.

Y'ou can enable search on floppy disk and/or specify folders located
an other drives. The Tokens will not be automatically imported ta the
protected store.

[“IE nable Token searchk

E nter path ta folder an hard drive;

Browse. ..

Selected Token search paths:
gMtokens

Token zearch on floppy digk

[] Enable Token search on floppy disk
Select flappy drive:

k. l [Canicel

By marking the check box Enable Token search, the mounted drives are scanned for stored PKCS #12
files when the OK button is clicked. By using the Browse... button, drives with PKCS #12 files can
be selected. The drive is added to the list of used disks by clicking the Add button, and removed by
clicking the Remove button.

USB drive, CD-ROM, and hard drive paths can be added to the list but not floppy disks. To use a
floppy disk, select the option “ Enable Token search on floppy disk” . Subdirectories on the floppy disk
are not searched.

If the states of the PKCS #12 files on the floppy disk have been changed, Personal is not updated
automatically. Select the Refresh command in the View menu to update the tokensin Personal.

This feature facilitates mobility, as PK CS #12 file can be stored on afloppy disk, USB-drive, or CD-
ROM, which can be used when travelling. Using a hard drive path allows for interoperability with
other PKI clients that may need access to the same PKCS #12 file.

Browser and Language Settings

Personal provides functions for configuring the security settings of Mozillabased browsers. This
featureis available by selecting Preferences in the View menu. In the Preferences window, select the
Web Browser and Language tab.

85

Administration

Figure 15.6. Web Browser and L anguage Settings

Mexus Personal - Preferences @@
Electronic Identity Taoken Search
“Web Browser andLanguage | Advanced I Card Readerz
Language
Language: Englizh [U5] b

Metzcapedtozilla Wweb Browser

Enable Perzaonal in broveser

Secure Sezzion - Remaving Taken
) Cloze session

[¥]:Da not ask in the future

(%) Do not close session

k. l [Canicel

Language

In the Language entry, a preferred language can be chosen. As default, the operating system language
is used. If the operating system language is not supported by Personal, English will be chosen as
default language in Personal .

Using Personal in the Browser

“Enable Personal in browser” is an option that should be selected if the user has a browser from
Mozillaor Firefox. Thisoptionwill configurethese browsersto usethe Nexus PK CS#11 cryptographic
module.

Normally, during SSL negotiations, these browsers will automatically select an available certificate.

Such an action is not wanted. The browsers should always ask the user which certificate to use. This
preferred action will be taken if the option "Enable Personal in browser" is selected.

Controlling Secure Sessions in the Browser

NetDetacher is a module in Persona that handles SSL sessions. The behavior of NetDetacher is
controlled by settings in this dialog box.

86

Administration

When atoken isused in an encrypted and authenticated session (SSL session), the encryption key will
be stored in the browser. Even when the token is removed, the session remains vaid. This can result
in a security flaw unless the session is terminated when the token is removed. Asit is not possible to
kill only the ongoing session(s), the browser itself has to be terminated.

NetDetacher can be configured to ask the user each time a used token is removed. This feature will
be obtained when the option “Do not ask in the future” is not selected. If you do not want to be asked,

select this option and, in addition, decide which default action the browser should take, i.e. whether
to leave the session or to closeit.

Advanced

Personal providesfunctionsfor getting information about installed operating system, browsers, and log
settings. Thesefeatures are available by sel ecting the Preferencesin the View menu. In the Preferences
window, select the Advanced tab.

Figure 15.7. Advanced

Logging

In the Logging entry, trace files can be enabled. By clicking the Browse button, a directory can be
selected for the three trace files that will be created:

* InthefileNx_prs. | og, al operations carried out in the Token APl are logged.

* InthefileNx_csp. | og, al operations carried out in Personal CSP are logged.

* InthefileNx_p11. | og, al operations carried out in Personal PK CS#11 are logged.
Operating System

In the Operating System entry, information on the installed operating system and patchesis displayed.

Installed Web Browsers

In the Installed Web Browsers entry, information on the installed web browsers and patches is
displayed.

Troubleshooting Password Dialogs

In the Troubleshooting Password Dial ogs section, settings for secure-desktop issues are found. Here
you can activate two methods for disabling the SwitchDesktop command for other processesto ensure
secure-desktop functionality and security.

Card Readers

The Card Readers tab contains alist of readers available to Personal.

87

Administration

Figure 15.8. Card Readers

MNexus Personal - Preferences @

- B Electroric [dentity qu_c;en Search
‘wWeb Browser and Language | Advanced | LardReadsrs

Ayailable Smart Card Beaders

Card readers;

Eﬁﬁ Gempluz USE SmartCard Reader 0

File Cache

The card content iz cached in order to optimize the uze of smart

cards.

k. l [Cancel

Double-click areader inthelist of availablereadersto seewhat version of thereader you haveinstalled.

In order to optimize card access, the contents of acard is cached in Personal. The card serial number
is mapped to a particular card file. If the button Empty Cache is clicked, all files containing cached
card information will be deleted. Thisfeatureis available to prevent a corrupt cache file from making
acard unusable. The next time the card isinserted in the card reader, a new cachefile will be created.

Tray lcon

Note

This section applies to Windows only.

In the system tray, a Personal tray icon is displayed. By double-clicking on this tray icon, the main
application window is launched. When right-clicking on the Personal tray icon, the following options
are available:

By clicking the Tokens command and sel ecting Enable Token search, the search function described
in*“ Searching for Soft Token” isactivated. In addition, all availabletokensare showninthe Tokens
list. If you click on atoken in the list, detailed information about that token will be presented in
awindow.

88

Administration

By clicking the Open command, the main application window is launched.
By clicking Preferences, the main application Preferences window is launched.

By selecting the Refresh command in the View menu, Personal will be updated with the current
contents of the floppy disk. This command is only available if afloppy disk drive is connected to
the system and searching for soft tokens on floppy disk is enabled.

By clicking Exit, Personal will terminate.

About

Help

n the main application window, the command About Nexus Personal can be selected under the Help

menu. In the "About Nexus Personal” box, information about Personal is displayed. By clicking the
Components... button, al installed Personal components and their versions will be displayed.

Figure 15.9. About

About Mexus Personal E]I’ZI

Nexus Personal c‘i

{ Mexus Perzonal v. 45.0 Online
| Copyright [C] 2006 T echnology Mexus AR
| &l rights reserved

hitbp: £ v, nesuszale. com

Onlinehelpisavailablefrom the Help menu. It isalso possibleto click the F1 buttonin various dialogs
to get context-sensitive help about the active dialog window.

89

Abbreviations
A

API (Application Programming
Interface)

B

BLOB (Binary Large OBject)

C

CMC (Common Messaging
Call)

COM (Component Object (Windows only)
Model)

CSP (Cryptographic Service (Windows only)
Provider)

D

DPAPI (Data Protection API) (Windows only)

G

GUI (Graphical User Interface)

GUID () Globa Unique IDentifier

IPC (Inter Process Calls)

M

MSCAPI (Microsoft (Windows only)
Cryptographic API)

N

NPAPI (Netscape Plugin API)

O

OTP (One-Time Password)

90

References

[1] ANS X9.17-1995 Financial Institution Key Management (Wholesale). . 1995. Appendix C. !

[2] ANS X9.31-1998 Digital Signatures using Reversible Public Key Cryptography for the Financial Services
Industry (rDSA) . . 1998. Appendix A.

[3] Riemann's hypothesis and tests for primality. Gary L. Miller. 300-317. 10.1016/S0022-0000(76)80043-8.
Journal of Computer and System Sciences. 13. 3. December 1976. 0022-0000.

[4] Probabilistic algorithm for testing primality. Michael O. Rabin. 128-138. 10.1016/0022-314X(80)90084-0.
Journal of Number Theory. 12. 1. February 1980. 0022-314X.

[5] Certificate Management Messages over CMS. M. Myers, , X. Liu, , J. Schaad, , and J. Weinstein. April 2000.
[6] PKCS#11 v2.20: Cryptographic Token Interface Sandard Draft 4. .
[7] Nexus Personal Message Reference Guide.

[8] Sgnature Profile for BankiD (vers 1.4.3).

Note

Technology Nexus AB is not responsible for the contents of external Internet sites.

'Because ANSI has withdrawn X9.17, the appropriate reference isto ANSI X9.31

91

Appendix A. Eolas Patent

Introduction

Note

This Appendix only appliesto the Windows platform.

As aresult of an adverse verdict against Microsoft in a patent infringement lawsuit brought by the
University of California and Eolas Technologies, Microsoft may change the way active content is
activated in Internet Explorer. This includes loading ActiveX controls, such as the Personal browser
plugins.

For the moment, Microsoft has put these changes on hold until questions around validity of the Eolas
Patent have been clarified.

More information about the Eolas patent issue can be found on http://msdn.microsoft.com/ieupdate/.

The change (if Eolas Patent is valid) will mean that if an ActiveX control is loaded using the
<OBJECT> tag and have any <PARAM> tags, the browser will show a warning dialog, and the user
will have to press OK, in order to load the control. There are two solutions below describing how to
avoid the showing of the warning dialog.

Solution 1

If the control does not load any dynamic data through the <PARAM> tags, such as URIs, it is possible
to specify the attribute NOEXTERNALDATA="true' in the <OBJECT> tag, and the warning dialog
will not be shown. However if thisis done, the browser will not load any <PARAM> that might be
URIs. Thisincludes any parameter valuesincluding the characters“.” and “/”.

If needed, parameters including these characters (including URIs) might then be set using script
functions.

Solution 2

It is also possible not to script the actual control, but rather create a script function that inserts the
<OBJECT> and <PARAM> tagsinto the HTML page. The script function must be defined in aseparate
file, and not in the HTML file. The browser then should not show the warning dialog.

For more information regarding thisworkaround, please refer to http://msdn.microsoft.com/ieupdate/.

92

Appendix B. Key Generation

Software Key Generation

Personal uses ANSI X9.17 and a Miller-Rabin test with five repetitions for key generation.

For more information, see the following references: [1], [2], [3], and [4].

93

Appendix C. Internal Stores

Background

AnInternal Storeisthe placewhere Personal storestokensbelonging to auser. Each token corresponds
to afilein the Interna Store directory. There are two different types of Internal Stores and these are
called 1.0 and 1.1 respectively.

Note

The store type is specified per file (as explained in “File Formats’ on page 126) and not per
Interna Store.

In an Internal Store of type 1.0, the tokens are protected by a PIN code.

In an Internal Store of type 1.1, in addition to the PIN code protection, the tokens are protected by
means of a data protection APl (DPAPI) that uses encryption with a key derived from the user's
Windows logon password (Windows only). Personal, or other applications managing PK CS#5, will
not be able to read afile protected by DPAPI.

Different Windows versions support different types of Internal Store as indicated by the following
tables.

Internal Storetypesin Personal 4.0

Win98 WinME WinXP Home |WinXP Pro Win2000

All 1.0 1.0 11 11 1.1
environments

Internal Storetypesin Personal 4.0.1 and later versions

Win98 WIinME WinXP WinXP Pro |Win2000 Win Vista
Home

Standalone* |1.0 1.0 11 11 11 11
Asserted N/A**** N/A N/A 11 11 11
non-NT4
domain**
Not N/A N/A N/A 1.0 11 1.0
Asserted
non-NT4
domain***

Comments to the table * Computer does not belong to a domain. ** At least one (primary) domain
controller responds that it is running either Windows 2000 or Windows 2003. *** "Not asserted non-
NT 4 domain" meansit cannot be asserted that at least one (primary) domain controller is not running
Windows 2000 or Windows 2003. Thereason for thiscan bethat the domain controller isnot reachable
(unplugged network cable) or that it responds that it indeed is running NT4. **** OS cannot belong
to adomain.

Note

Thetype of Internal Store cannot be seen from the application in Personal 4.0 but itisvisible
in the Token View dialog in Personal 4.0.1 and later.

94

Internal Stores

File Formats

There exist different file formatsin different versions of Personal as shown in thistable.

File format

Introduced in Personal vers.

Comments

0

4.0

The first version of the file
format. Personal will migrate
those tokens to the default file
format when possible.

401

A version field is introduced in
thefirst ASN.1 object to identify
the file version.

4.5

In this format, the MAC
excludes sub CA certificates.

4.7

Encrypted Token objects with
PK CSH5 encryption are encoded
according to the PKCS#5 v2.0
standard. The difference from
format version 2 is that those
objectsare ASN.1 encoded using
the data structures PBES2 and
PBKDF2 instead of PBES1 and
PBKDF1.

4.8

In this format al attributes of a
tokenanditsobjectsarestoredin
bigendian byte ordering.

4.9

In this format, a bug, introduced
in Persona 4.8, has been
fixed. With this format it is
now possible to move a token
between format 1.0 and 1.1
without having problems with
PIN verification.

Note

The file format of the stored tokens cannot be seen from the GUI in either version of the
application.

The file format used in Personal 4.0 is not supported in later versions of Personal, but it is possible
to convert the file format of the Interna Store tokens created in Personal 4.0 if the Migration Wizard
isinvoked.

If there are tokensin file format version O when alater version of Personal isinstalled, the Migration
Wizard will be started automatically and a PIN code must be entered for each token to be migrated.
The new file format will vary depending on which version of Personal isinstalled.

If there aretokensin file format versions 0, 1 or 2 when Personal 4.7 or later isinstalled, these tokens
will be upgraded to version 3 automatically in any scenario where the user needsto enter the PIN code,
since the PIN code is required in order for the format upgrade to take place.

Object Identifiers related to the Internal Store Token

95

Internal Stores

Prot ect edSt or eToken OBJECT | DENTI FIER :: = .752.36.4.1.2
P5Encr ypt edCbj ect OBJECT | DENTI FI ER :: = 1. 52.36.4.1.3

DPAPI Encrypt edCbj ect OBJECT IDENTIFIER ::= 1.2.752.36.4.1. 4

DPAPI Encrypti onAl gorithm d OBJECT I DENTIFIER ::= 1.2.752.36.4.1.5

1.2
2.7

A token filein Personal 4.0.1 and later has the following ASN.1 structure.

Protected store token ::= SEQUENCE {
fileVersion FileVersion,
attributes Attributes,
sof t Tokenhj ect s Sof t Tokenoj ect s,
mac Mac
}
Fil eVersion ::= | NTEGER
Attributes ::= OCTET STRI NG
Sof t TokenObj ects ::= SET OF Soft TokenObj ect
Sof t TokenChj ect ::= SEQUENCE {
identifier OBJECT | DENTI FI ER
obj ect Dat a OCTET STRI NG
}
When the Soft TokenChject is a ProtectedStoreChject (1.2.752.36.4.1.2) the
obj ect Dat a OCTET STRI NG encapsul at es
SEQUENCE {
attributes OCTET STRI NG
obj ect Dat a OCTET STRI NG

}
Mac ::= OCTET STRING

In this file format, the first ASN.1 object contains an integer to identify the file format version. The
value for a specific version of Personal can be read from the table in “File Formats’ on page 126.

In addition, the MAC value is calculated differently (see “MAC Calculation” on page 131 for more
information).

The private key storage without DPAPI protection has the following structure in file format versions
0,1and 2.

OBJECT IDENTIFIER "1 2 752 36 4 1 3' (P5EncryptedCbject)
OCTET STRING encapsul ates {
SEQUENCE {
OBJECT IDENTIFIER "1 2 752 36 4 1 2' (ProtectedStoreToken)
OCTET STRING encapsul ates {
SEQUENCE {
OCTET STRI NG
[00 00 00 00 00 OO 00 00 04 .]
OCTET STRING encapsul ates {
SEQUENCE {
| NTEGER 0
SEQUENCE {
OBJECT | DENTI FI ER
data (1 2 840 113549 1 7 1) (PKCS #7)
SEQUENCE {
OBJECT | DENTI FI ER
pbeW t hSHAANd3- KeyTri pl eDES-CBC (1 2 840 113549 1 12 1 3) (PKCS #12 Pbel ds)
SEQUENCE {
OCTET STRI NG
[D6 CO 2C 96 AD 3A 3D 4D B2 FE.]
| NTEGER 8192

96

Internal Stores

(0]
[2E F3 49 DC 0B DA 38 F2 88 15...]

The private key is protected by 8192 iterations of SHA-1 with TripleDESCBC encryption.

The private key storage without DPAPI protection has the following structure in file format 3.

OBJECT IDENTIFIER "1 2 752 36 4 1 3' (P5Encryptedject)
OCTET STRING encapsul ates {
SEQUENCE {
OBJECT IDENTIFIER "1 2 752 36 4 1 2' (ProtectedStoreToken)
OCTET STRING encapsul ates {
SEQUENCE {
OCTET STRI NG
[00 00 00 00 00 OO 00 00 04 .]
OCTET STRING encapsul ates {
SEQUENCE {
| NTEGER 0
SEQUENCE {
OBJECT | DENTI FI ER
data (1 2 840 113549 1 7 1) (PKCS #7)
SEQUENCE {
OBJECT | DENTI FI ER
pkcs5PBES2 (1 2 840 113549 1 5 13) (PKCS#5 PBES2)
SEQUENCE {
SEQUENCE {
OBJECT | DENTI FI ER
pkcs5PBKDF2 (1 2 840 113549 1 5 12) (PKCS#5 PBKDF2)
SEQUENCE {
-
| NTEGER 8192
}
}
SEQUENCE {
OBJECT | DENTI FI ER
des- EDE3-CBC (1 2 840 113549 3 7)
OCTET STRI NG
FE 07 6B 5A EE 03 A7 25
}
}
[0]
[2E F3 49 DC 0B DA 38 F2 88 15...]

(**) Is the salt, which can be encoded differently dependi ng on which type of
salt is used (specified in PKCS#5 v2.0).

The private key is protected by 8192 iterations of SHA-1 with TripleDESCBC encryption.

The private key storage with DPAPI protection has the following structure.

97

Internal Stores

OBJECT IDENTIFIER "1 2 752 36 4 1 3'
OCTET STRING encapsul ates {
SEQUENCE {
OBJECT IDENTIFIER "1 2 752 36 4 1 4'
OCTET STRING encapsul ates {
SEQUENCE {
OBJECT IDENTIFIER "1 2 752 36 4 1 2'
OCTET STRING encapsul ates {
SEQUENCE {
OCTET STRING [00 00 00 00 00 00 00 00 .}]
OCTET STRING encapsul ates {
SEQUENCE {
| NTEGER 0
SEQUENCE {
OBJECT | DENTI FIER data (1 2 840 113549 1 7 1) (PKCS #7)
SEQUENCE {
OBJECT IDENTIFIER "1 2 752 36 4 1 5'

(DPAPI Encrypti onAl gorithm d)
NULL

}
(0]
[01 00 00 00 DO 8C 9D DF .] (***)

(P5Encrypt edObj ect)
(DPAPI Encr ypt edbj ect)

(ProtectedStoreToken)

(***) is the data that when decrypted with DPAPI will yield the underlying
PKCS#5 encrypted private key as shown in one of the two previous exanpl es,
dependi ng on the file format version.

MAC Calculation

The MAC calculation varies depending on the version of the file format.
» Forversion 1, the MAC includes all CA certificates on the token.

» For version 2 and later, the MAC includes only the Root CA.

98

Appendix D. CSP and PKCS#11
Configuring

Platform dependencies

Note

CSP only applies to the Windows platform.

Implementation

In the configuration file personal.cfg (on Windows and Linux) and
se. nexus. per sonal . cf g (on Mac), there is a section named [CSP_PK CS11] holding settings
related to PKCS#11 and CSP.

In this section there is a parameter named Sections defining which applications are using specific
settings. If there is more than one application, they should be separated by semicolons.

CSPisusing the config API to get settings from configuration file. The config APl works according
to the following principles:

1. Get the process name and check if it is one of the applications specified by parameter Sections.

2. When the name is specified by Sections and there is akey defined for that process, use that key. If
akey is missing use the value in [CSP_PKCS11] containing the global settings.

3. If the specified config parameter is neither in the process specific section nor in the global section,
the application will behave according to the default settings compiled into CSP and PK CS#11.

When CSP and PKCS#11 are loaded by an application, the config file is automatically updated
with a section for the calling application if that section does not already exists. This means that
if, for example, the program CTest (CTest.exe) isloading PK CS#11, the first time, the config file
will be updated. CTest.exe is added to the parameter Sections and a new section [cstest.exe] is
created for CTest.

Example: The following example will show atypical excerpt from a config file:

[CSP_PKCS11]

CSP_Def aul t KeyCont ai ner=\\.\Card Reader X 0\
CSP_I gnor eFl agSi | ent =0

P11_Al wayslLoggedl nMbde=0

Secti ons=appl. exe; app2. exe

[appl. exe]

CSP_Enabl eFl agNoHashQ d=0

CSP_I| gnor eFl agSi | ent =1

[app2. exe]

P11_Al wayslLogged! nvbde=1

CSP_Def aul t KeyCont ai ner=\\.\Card Reader 2 0\

99

Appendix E. PIN-Related Issues
PIN Caching

In Personal it is possible to cache PIN codes in the PK CS#11 and the CSP (Windows only) modules.
Thisisthe case when Personal isrunin PIN caching mode. Personal can also run in PIN non-caching
mode. Then no PIN caching will take place.

The PIN caching can be configured with the configuration parameters CSP_EnableCachePIN and
P11 EnableCachePIN in personal.cfg. If set to 1, PIN caching is enabled, and when set to O, PIN
caching is disabled.

PIN caching appliesto all tokens, i.e. both smart card and software tokens.

This appendix highlights various aspects of the different operation modes.

Note

When the term card is used throughout this description it only applies to smart cards. When
the term token is used it appliesto both smart cards and software tokens.

Sometimes, card specific information is marked with the icon

PIN Caching Mode

Each process that loads the PK CS#11 and the CSP modules has its own PIN caching environment.
When asuccessful login is performed, the PIN isinternally logged out and isstored in the PIN caching
environment in the given process. The cached PIN will later be used as soon as a private operation is
performed. As soon as a private operation is performed the PIN isinternally logged out.

If the CSP and PK CS#11 are loaded into the same process, they will share PIN caching environment.

When running an application in PIN caching mode, the card is always accessible from other
applications since the card will always be rel eased when an operation that needs private card
access has been performed.

Note

This section only appliesto the Windows platform.

A PIN is cached on atoken basis. In one process, all contexts accessing a specific token will have
access to the cached PIN code. The PIN code is cleared from the cache as soon as the last context of
a specific token is released, or when the token is removed from its reader.

PKCS#11 Specific Information

Since every PKCS#11 slot represents one PIN, the PIN is cached on a dot basis. In one process, al
sessions accessing a specific slot will have access to the cached PIN code. As soon as C_Logout is
called, or the last session to a specific dot is closed, the PIN is cleared from the cache. Also, if the
specific token is removed, the PIN is cleared form the cache.

PIN Non-Caching Mode

In PIN non-caching mode the calling application has the control of the login states of the tokens.

100

PIN-Related |ssues

If the CSP and PKCS#11 are loaded into the same process, they will share the login state of the token.

released.

CSP Specific Information

Note

This section only applies to the Windows platform.

If no PIN caching is used, the card will be exclusively locked by the calling process aslong
as the user is logged in. Thus, it will not be accessible from other applications until it is

If acontext islogged into atoken, that logged in state can be used by all other contexts accessing that
specific token. The token will be logged out as soon as the last context to the token is released.

A card will not be accessible to other processes until the card islogged out.

It is possible to configure the CSP to aways log out after it has performed an operation that needs
logged in state. The configuration parameter is CSP_L ogoutAfterSign and when set to 1, the token
islogged out after a private operation.

PKCS#11 Specific Information

If asession islogged into a dot, the slot will be accessible from all other sessions to that slot in the
calling process. The token will be logged out as soon as C_Logout is called, or all sessionsto agiven

slot are closed.

A card will not be accessible to other processes until the card islogged out.

It is possible to configure the PK CS#11 to always log out after it has performed a signing operation.

The configuration parameter is P11 _L ogoutAfterSign and when set to 1, the token islogged out after

asigning operation.

Configuration Details

Assume that we have a scenario where the user has logged into a token in order to sign a hash with
his private key present on the token.

The table below, which applies to the Windows platform only, shows the behavior of the CSP in
different combinations of the flags CSP_EnableCachePIN and CSP_L ogoutAfterSign.

CSP_EnableCachePIN=0

CSP_EnableCachePIN=1(defa

ult)

CSP_L ogoutAfterSign=0(default

YA card that islogged inislocked
by the calling application until
the last context to the card is
released.

A card is released after every
private operation and will thus
be accessible to other processes.

CSP_LogoutAfterSign=1

A logout is forced after every
private operation. As a result,
the user will be asked for his
PIN prior to every operation

requiring that heislogged in.

A logout is forced after every
private operation. As a result,
the user will be asked for his
PIN prior to every operation
requiring that heislogged in.

The table below shows the behavior of the PKCS#11 in different combinations of the flags
P11 EnableCachePIN and P11 LogoutAfterSign. P11 EnableCachePIN=0

P11_EnableCachePI N=1(defau

P11 L ogoutAfter Sign=0(defau

P11 LogoutAfterSign=0(default

A card will not be accessible
from other applications as long
asitisinloggedin state.

The token is internally released
after every private operation. A
card will be accessible from

101

PIN-Related |ssues

P11_EnableCachePI N=1(defau

P11 L ogoutAfter Sign=0(defau

other applications even if it is
loggedin.

P11 L ogoutAfterSign=1

A logout is forced after every
signing operation. A card will
not be accessible from other
applications as long as it is in
logged in state.

A logout is forced after every
signing operation. The token
is internally released after
every private operation. A card
will be accessible from other
applications even if it is logged
in.

Force Login Before Sign

Personal can be configured to require a PIN-reverification prior to a signing operation with a key,
when the key or the corresponding certificate has a specific key usage.

The configuration parameter is Forcel oginBeforeSignKeyUsage in the file personal.cfg. (See the
delivered sample configuration file for more information about this parameter.)

Only the key usage extension Non-Repudiation is supported.

Example: If PIN-reverification should be performed prior to every non-repudiation signature, Personal

should be configured as follows:

[CSP_PKCS11]

For ceLogi nBef or eSi gnKeyUsage=0x40

102

	Nexus Personal
	Table of Contents
	Introduction
	About this Document
	Screendumps

	Product Overview
	Web Browser Plug-Ins
	Cryptographic APIs
	Administration
	NetDetacher

	Product Structure
	Personal Process
	Browser Process
	Third-Party Applications

	GUI Branding
	Environment
	What is New in this Version
	Where to Find the Information
	Release.txt
	Help

	How to Contact Us

	Chapter 1. Functional Description Overview
	Architecture
	WebSigner
	Signer2
	Authentication
	Registration Utility
	Administration Plug-in
	Version Plug-in
	LogoutTokens Plug-in

	Cryptographic APIs
	Microsoft CSP
	PKCS#11

	Installation and Updating
	Soft Token Migration
	Integration with Standard Products
	Integration with Internet Explorer
	Integration with Mozilla-Based Browsers

	Branding
	Branding on Windows platforms
	Branding on Mac OS X
	Branding on Linux

	Card Reader Support

	Chapter 2. WebSigner Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Usage and GUI
	Sample Web Pages
	Digital Signature Format

	Chapter 3. Signer2 Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Sample Web Pages
	Internet Explorer
	Mozilla-based browsers
	Signer2 Signature Sample

	Error Codes

	Chapter 4. Authentication Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Sample Web Pages
	Internet Explorer
	Mozilla-based browsers
	Authentication Signature Sample

	Error codes

	Chapter 5. Registration Utility Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Usage and GUI
	Creating a Token
	Store Certificates
	PIN Policy

	Sample Web Pages
	Internet Explorer
	Mozilla-based browsers

	Error Codes
	Format of a CMC Request and Response
	Request
	One Time Password
	Response

	Chapter 6. Administration Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Sample Web Pages
	Internet Explorer
	Mozilla-based browsers

	Error codes
	Configuration

	Chapter 7. LogoutTokens Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Usage
	Sample Web Pages
	Security Issues

	Chapter 8. Version Plug-in
	Introduction
	Plug-in Activation
	Internet Explorer
	Mozilla-Based Browsers

	Parameters
	Scripting
	Sample Web Pages
	Output format

	Chapter 9. Personal PKCS#11
	Introduction
	Mozilla Browsers
	PKCS #11 API
	General Purpose
	Slot and Token Management
	Session Management
	Object Management
	Encryption and Decryption
	Message Digesting
	Signing and Verifying
	Key Management
	Random Number Generation
	Interoperability

	PKCS#11 Configuration

	Chapter 10. Personal CSP
	Introduction
	CSP Information
	CSP Functions
	CSP Connection
	Key Management
	Hashing and Digital Signatures
	Encryption

	Interoperability
	Additional Comments

	Using XEnroll with Personal CSP
	Container Name
	Blank container name
	Card reader name
	Card reader name and ID
	Unknown container name

	Example

	CSP Configuration

	Chapter 11. Installation on Windows
	Program Requirements
	The Installation Program
	Packaging
	Installation Conditions
	Installation Configuration
	Installation Options
	Messages from the Installation Program
	Shortcuts
	Installation Directory Tree

	Web Installation Flowchart
	Limitations

	CSP & PKCS#11
	Plug-ins and ActiveX Controls
	Upgrade and Migration
	Uninstall
	Controlling the Behavior of Winlogon
	Event Log and Return Codes

	Chapter 12. Installation on Macintosh
	Introduction
	Install
	Uninstall

	Chapter 13. Installation on Linux
	Introduction
	Install
	Uninstall

	Chapter 14. Installation on Citrix
	Introduction
	Install

	Chapter 15. Administration
	Personal GUI
	Administration GUI
	Import and Export
	Internal Store
	Import Soft Tokens
	Export Soft Tokens

	Managing PIN Codes
	Searching for Soft Token
	Web Browser and Language Settings
	Language
	Using Personal in the Browser
	Controlling Secure Sessions in the Browser

	Advanced
	Logging
	Operating System
	Installed Web Browsers
	Troubleshooting Password Dialogs

	Card Readers
	Tray Icon
	About
	Help

	Abbreviations
	References
	Appendix A. Eolas Patent
	Introduction
	Solution 1
	Solution 2

	Appendix B. Key Generation
	Software Key Generation

	Appendix C. Internal Stores
	Background
	File Formats
	Object Identifiers related to the Internal Store Token

	MAC Calculation

	Appendix D. CSP and PKCS#11 Configuring
	Platform dependencies
	Implementation

	Appendix E. PIN-Related Issues
	PIN Caching
	PIN Caching Mode
	PKCS#11 Specific Information

	PIN Non-Caching Mode
	CSP Specific Information
	PKCS#11 Specific Information

	Configuration Details

	Force Login Before Sign

